【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎(chǔ)上,進(jìn)一步證明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
【答案】B
【解析】
解:A.根據(jù)有一組鄰邊相等的平行四邊形是菱形,或者對(duì)角線(xiàn)互相垂直的平行四邊形是菱形,所以不能判斷平行四邊形ABCD是正方形;
B.根據(jù)鄰邊相等的平行四邊形是菱形,對(duì)角線(xiàn)相等的平行四邊形為矩形,所以能判斷四邊形ABCD是正方形;
C.根據(jù)一組鄰角相等的平行四邊形是矩形,對(duì)角線(xiàn)相等的平行四邊形也是矩形,即只能證明四邊形ABCD是矩形,不能判斷四邊形ABCD是正方形;
D.根據(jù)對(duì)角線(xiàn)互相垂直的平行四邊形是菱形,對(duì)角線(xiàn)互相平分的四邊形是平行四邊形,所以不能判斷四邊形ABCD是正方形.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若兩個(gè)函數(shù)y1和y2的自變量x的取值范圍相同,我們不妨把y1和y2的比值y稱(chēng)為x的比函數(shù),且比函數(shù)的自變量x的取值范圍不發(fā)生改變.例如:y1=x2+2x(x>0),y2=x(x>0),則x的比函數(shù)為y==x+2(x>0).
(1)已知y1=x2﹣4(2≤x≤3),y2=x+2(2≤x≤3),寫(xiě)出x的比函數(shù)y的解析式,并求出y的取值范圍;
(2)已知y1=x+2(x>1),y2=x﹣2(x>1),求x的比函數(shù)y的圖象上的整數(shù)點(diǎn)(橫坐標(biāo)和縱坐標(biāo)都為整數(shù)的點(diǎn))的坐標(biāo);
(3)已知y1=x2﹣x+1,y2=x2+x+1,若x的比函數(shù)y的圖象與拋物線(xiàn)y3=x2+2x+k(k為常數(shù))存在交點(diǎn),求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax(x﹣3)+c(a<0,0≤x≤3),反比例函數(shù)y=(x>0,k>0)圖象如圖1所示,反比例函數(shù)y=(x>0,k>0)的圖象經(jīng)過(guò)點(diǎn)P(m,n),PM⊥x軸,垂足為M,PN⊥y軸,垂足為N;且OMON=12.
(1)求k的值;
(2)當(dāng)c=0時(shí),計(jì)算拋物線(xiàn)與x軸的兩個(gè)交點(diǎn)之間的距離.
(3)確定二次函數(shù)y=ax(x﹣3)+c(a<0,0≤x≤3)對(duì)稱(chēng)軸.
(4)如圖2,當(dāng)a=﹣1時(shí),拋物線(xiàn)y=ax(x﹣3)+c(a<0;0≤x≤3)有一時(shí)刻恰好經(jīng)過(guò)P點(diǎn),且此時(shí)拋物線(xiàn)與雙曲線(xiàn)y=(x>0,k>0)有且只有一個(gè)公共點(diǎn)P(如圖2所示),我們不妨把此時(shí)刻的c記作c1,請(qǐng)直接寫(xiě)出拋物線(xiàn)y=ax(x﹣3)+c(a<0,0≤x≤3)的圖象與雙曲線(xiàn)y=(x>0,k>0)的圖象有一個(gè)公共點(diǎn)時(shí)c的取值范圍.(溫馨提示:c1作為已知數(shù),可直接應(yīng)用哦!)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)全等的含30°角的直角三角板重疊在一起,如圖,將△A′B′C′繞AC的中點(diǎn)M轉(zhuǎn)動(dòng),斜邊A′B′剛好過(guò)△ABC的直角頂點(diǎn)C,且與△ABC的斜邊AB交于點(diǎn)N,連接AA′、C′C、AC′.若AC的長(zhǎng)為2,有以下五個(gè)結(jié)論:①AA′=1;②C′C⊥A′B′;③點(diǎn)N是邊AB的中點(diǎn);④四邊形AA′CC′為矩形;⑤A′N=B′C=,其中正確的有( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求證:無(wú)論k取什么實(shí)數(shù)值,該方程總有兩個(gè)不相等的實(shí)數(shù)根?
(2)當(dāng)Rt△ABC的斜邊a=,且兩條直角邊的長(zhǎng)b和c恰好是這個(gè)方程的兩個(gè)根時(shí),求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“校園讀詩(shī)詞誦經(jīng)典比賽”結(jié)束后,評(píng)委劉老師將此次所有參賽選手的比賽成績(jī)(得分均為整數(shù))進(jìn)行整理,并分別繪制成扇形統(tǒng)計(jì)圖和頻數(shù)直方圖,部分信息如下圖:
扇形統(tǒng)計(jì)圖 頻數(shù)直方圖
(1)參加本次比賽的選手共有________人,參賽選手比賽成績(jī)的中位數(shù)在__________分?jǐn)?shù)段;補(bǔ)全頻數(shù)直方圖.
(2)若此次比賽的前五名成績(jī)中有名男生和名女生,如果從他們中任選人作為獲獎(jiǎng)代表發(fā)言,請(qǐng)利用表格或畫(huà)樹(shù)狀圖求恰好選中男女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方ABCD內(nèi)一動(dòng)點(diǎn)E到A、B、C三點(diǎn)的距離之和的最小值為,則這個(gè)正方形的邊長(zhǎng)為_____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=10CM,弦長(zhǎng)AC=6cm,∠ACB的平分線(xiàn)交⊙O于點(diǎn)D.
(1)求BC的長(zhǎng).
(2)求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象與正比例函數(shù)的圖象交于點(diǎn),且點(diǎn)的橫坐標(biāo)為2.
(1)求反比例函數(shù)的表達(dá);
(2)若射線(xiàn)上有點(diǎn),,過(guò)點(diǎn)作與軸垂直,垂足為點(diǎn),交反比例函數(shù)圖象于點(diǎn),連接,,請(qǐng)求出的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com