【題目】如圖,⊙O的直徑AB10CM,弦長AC6cm,∠ACB的平分線交⊙O于點(diǎn)D

1)求BC的長.

2)求ABD的面積.

【答案】1BC8cm;(2)△ABD的面積=25

【解析】

1)根據(jù)圓周角定理可得∠ACB=∠ADB90°,利用勾股定理求出BC的長即可.

2)由CD平分∠ACB可得,即可得出AD=BD,利用勾股定理可求出AD的長,利用三角形面積公式即可得答案.

1)∵AB是直徑

∴∠ACB=∠ADB90°

RtABC中,AB2AC2+BC2AB10cm,AC6cm

BC2AB2AC21026264

BC8cm.

2)∵CD平分∠ACB

,

ADBD

又∵在RtABD中,AD2+BD2AB2

AD2+BD2102

ADBD5cm).

∴△ABD的面積=×5225

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=8厘米,AC=16厘米,點(diǎn)PA出發(fā),以每秒2厘米的速度向B運(yùn)動(dòng),點(diǎn)QC同時(shí)出發(fā),以每秒3厘米的速度向A運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也相應(yīng)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t

⑴用含t的代數(shù)式表示:AP=   ,AQ=   

⑵當(dāng)以A,P,Q為頂點(diǎn)的三角形與ABC相似時(shí),求運(yùn)動(dòng)時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,要證明平行四邊形ABCD為正方形,那么我們需要在四邊形ABCD是平行四邊形的基礎(chǔ)上,進(jìn)一步證明( )

A.AB=ADACBDB.AB=ADAC=BDC.A=∠BAC=BDD.ACBD互相垂直平分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A-1,0),一次函數(shù)的圖像交坐標(biāo)軸于點(diǎn)BC,二次函數(shù)的圖像經(jīng)過點(diǎn)A、CB.點(diǎn)Q是二次函數(shù)圖像上一動(dòng)點(diǎn)。

1)當(dāng)時(shí),求點(diǎn)Q的坐標(biāo);

2)過點(diǎn)Q作直線//BC,當(dāng)直線與二次函數(shù)的圖像有且只有一個(gè)公共點(diǎn)時(shí),求出此時(shí)直線對應(yīng)的一次函數(shù)的表達(dá)式并求出此時(shí)直線與直線BC之間的距離。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是△ABC的外接圓,圓心OAB上,過點(diǎn)BO的切線交AC的延長線于點(diǎn)D

1)求證:△ABC∽△BDC

2)若AC=8,BC=6,求△BDC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級學(xué)生某科目學(xué)期總評成績是由完成作業(yè)、單元檢測、期末考試三項(xiàng)成績構(gòu)成的,如果學(xué)期總評成績80分以上(含80分),則評定為優(yōu)秀,下表是小張和小王兩位同學(xué)的成績記錄:

完成作業(yè)

單元測試

期末考試

小張

70

90

80

小王

60

75

_______

若按完成作業(yè)、單元檢測、期末考試三項(xiàng)成績按127的權(quán)重來確定學(xué)期總評成績.

1)請計(jì)算小張的學(xué)期總評成績?yōu)槎嗌俜郑?/span>

2)小王在期末(期末成績?yōu)檎麛?shù))應(yīng)該最少考多少分才能達(dá)到優(yōu)秀?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2+bx+cx、y的部分對應(yīng)值如表:

x

1

0

1

2

3

y

5

1

1

1

1

1)拋物線的對稱軸是_____;

2)不等式ax2+bx+c10的解集是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+6x軸于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),交y軸于點(diǎn)C,頂點(diǎn)為D,對稱軸分別交x軸、線段AC于點(diǎn)E、F

1)求拋物線的對稱軸及點(diǎn)A的坐標(biāo);

2)連結(jié)ADCD,求ACD的面積;

3)設(shè)動(dòng)點(diǎn)P從點(diǎn)D出發(fā),沿線段DE勻速向終點(diǎn)E運(yùn)動(dòng),取ACD一邊的兩端點(diǎn)和點(diǎn)P,若以這三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,且P為頂角頂點(diǎn),求所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[問題提出]

在判定兩個(gè)三角形全等時(shí),除根據(jù)一般三角形全等判定定理外,還有"" 方法.類似的,我們對直角三角形相似的條件進(jìn)行探索。

(1) [提出猜想]

除根據(jù)一般三角形相似判定的條件外,請你提出類似于""的判定直角三角形相似的方法,并用文字描述為: .

(2) [初步思考]

其中,我們不妨將問題用符號語言表示為:如圖1,中,, ,, 請給予證明.

(3) [深入研究]

若圖2中的,其他條件不變,兩個(gè)三角形是否相似?試?yán)靡陨咸骄康慕Y(jié)論解決問題,若相似請證明,若不相似,請畫出反例.

查看答案和解析>>

同步練習(xí)冊答案