【題目】如圖,⊙O的半徑為17cm,弦AB∥CD,AB=30cm,CD=16cm,圓心O位于AB、CD的上方,求AB和CD間的距離.
【答案】解:分別作弦AB、CD的弦心距,設(shè)垂足為E、F,連接OA,OC。
∵AB=30,CD=16,∴AE=AB=15,CF=CD=8。
又∵⊙O的半徑為17,即OA=OC=17。
∴在Rt△AOE中,。
在Rt△OCF中,。
∴EF=OF-OE=15-8=7。
答:AB和CD的距離為7cm。
【解析】垂徑定理,;勾股定理。
分別作弦AB、CD的弦心距,設(shè)垂足為E、F;由于AB∥CD,則E、O、F三點(diǎn)共線,EF即為AB、CD間的距離;由垂徑定理,易求得AE、CF的長,可連接OA、ODC在構(gòu)建的直角三角形中,根據(jù)勾股定理即可求出OE、OF的長,也就求出了EF的長,即弦AB、CD間的距離。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A,B在圓上,BC,AD分別與該圓相交于點(diǎn)E,F(xiàn),G是弧AF的三等分點(diǎn)(弧AG>弧GF),BG交AF于點(diǎn)H.若弧AB的度數(shù)為30°,則∠GHF等于( )
A. 40° B. 45° C. 55° D. 80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點(diǎn),拋物線上另有一點(diǎn)C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設(shè)直線BC與y軸交于點(diǎn)M,點(diǎn)C是BM的中點(diǎn)時(shí),求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點(diǎn)P,使得四邊形ABPC面積最大?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
(1)第①行數(shù)按什么規(guī)律排列?
(2)第②③行數(shù)與第①行數(shù)分別有什么關(guān)系;
(3)設(shè)分別為第①②③行的2012個(gè)數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分交于點(diǎn).
(1)若BC=7,BD=4,則點(diǎn)到的距離是________;
(2)若,點(diǎn)到的距離是8,則的長是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結(jié)DC.
(1)圖2中的全等三角形是_______________,并給予證明(說明:結(jié)論中不得含有未標(biāo)識(shí)的字母);
(2)指出線段DC和線段BE的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=BC,D是AC上一點(diǎn),AE⊥BD,交BD的延長線于E,CF⊥BD于F.
(1)求證:CF=BE;
(2)若BD=2AE,求證:∠EAD=∠ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級(jí)學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計(jì)圖表:
頻數(shù)分布表
身高分組 | 頻數(shù) | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計(jì) | 100% |
(1)填空:a=____,b=____;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校九年級(jí)共有600名學(xué)生,估計(jì)身高不低于165cm的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一圓形零件的標(biāo)準(zhǔn)直徑是,超過規(guī)定直徑長度的數(shù)量(毫米)記作正數(shù),不足規(guī)定直徑長度的數(shù)量(毫米)記作負(fù)數(shù),檢驗(yàn)員某次抽查了零件樣品,檢查的結(jié)果如下:
序號(hào) | |||||
直徑長度/ |
(1)試指出哪件樣品的大小最符合要求?
(2)如果規(guī)定誤差的絕對(duì)值在之內(nèi)是正品.誤差的絕對(duì)值在之間是次品,誤差的絕對(duì)值超過的是廢品,那么上述五件樣品中,哪些是正品,哪些是次品,哪些是廢品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com