【題目】如圖,點(diǎn)D在線段BC上,若BC=DE,AC=DC,AB=EC,且∠ACE=180°—∠ABC—2x°,則下列角中,大小為x°的角是
A.∠EFCB.∠ABCC.∠FDCD.∠DFC
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12 m,寬是4 m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線上的點(diǎn)C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過(guò)?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過(guò)8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,OM是∠AOB的平分線,點(diǎn)C在OM上,OC=5,且點(diǎn)C到OA的距離為3.過(guò)點(diǎn)C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結(jié)論:OD+OE等于多少;
(1)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA不垂直時(shí)(如圖2),上述結(jié)論是否成立?并說(shuō)明理由;
(2)把圖1中的∠DCE繞點(diǎn)C旋轉(zhuǎn),當(dāng)CD與OA的反向延長(zhǎng)線相交于點(diǎn)D時(shí):
①請(qǐng)?jiān)趫D3中畫出圖形;
②上述結(jié)論還成立嗎?若成立,請(qǐng)給出證明;若不成立,請(qǐng)直接寫出線段OD、OE之間的數(shù)量關(guān)系,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開(kāi)軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過(guò)點(diǎn)(1,2),后三分鐘時(shí)過(guò)點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過(guò)點(diǎn)(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過(guò)點(diǎn)(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開(kāi)口向上,對(duì)稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過(guò)的點(diǎn)的坐標(biāo).
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來(lái)解答下面的問(wèn)題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點(diǎn)E為△ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線;
(2)若AD=2,AE=6,求EC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,1),B(-1,1),C(0,4).
(1)在平面直角坐標(biāo)系中描出A,B,C三點(diǎn);
(2)在同一平面內(nèi),點(diǎn)與三角形的位置關(guān)系有三種:點(diǎn)在三角形內(nèi)、點(diǎn)在三角形邊上、 點(diǎn)在三角形外.若點(diǎn)P在△ABC外,請(qǐng)判斷點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′與△ABC的位置關(guān)系,直接寫出判斷結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△PQN中,若∠P=∠Q+α(0°<α≤25°),則稱△PQN為“差角三角形”,且∠P是 ∠Q的“差角”.
(1)已知△ABC是等邊三角形,判斷△ABC是否為“差角三角形”,并說(shuō)明理由;
(2)在△ABC中,∠C=90°,50°≤∠B≤70°,判斷△ABC是否為“差角三角形”,若是,請(qǐng)寫出所有的“差角”并說(shuō)明理由;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,E為AC的中點(diǎn),AD平分∠BAC,BA:CA=2:3,AD與BE相交于點(diǎn)O,若△OAE的面積比△BOD的面積大1,則△ABC的面積是( 。
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在直角坐標(biāo)系內(nèi)的位置如圖所示.
(1)分別寫出A、B、C的坐標(biāo);
(2)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于y軸對(duì)稱,并寫出B1的坐標(biāo);
(3)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC關(guān)于原點(diǎn)對(duì)稱,并寫出A2的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com