【題目】在以“關(guān)愛(ài)學(xué)生、安全第一”為主題的安全教育宣傳月活動(dòng)中,某學(xué)校為了了解本校學(xué)生的上學(xué)方式,在全校范圍內(nèi)隨機(jī)抽查部分學(xué)生,了解到上學(xué)方式主要有:A:結(jié)伴步行、B:自行乘車(chē)、C:家人接送、D:其他方式,并將收集的數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:

1)本次抽查的學(xué)生人數(shù)是多少人?

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖;

3)“自行乘車(chē)”對(duì)應(yīng)扇形的圓心角的度數(shù)是  度;

4)如果該校學(xué)生有2000人,請(qǐng)你估計(jì)該!凹胰私铀汀鄙蠈W(xué)的學(xué)生約有多少人?

【答案】1)本次抽查的學(xué)生人數(shù)是120人;(2)見(jiàn)解析;(3126;(4)該校“家人接送”上學(xué)的學(xué)生約有500人.

【解析】

1)本次抽查的學(xué)生人數(shù):18÷15%120(人);

2A:結(jié)伴步行人數(shù)12042301830(人),據(jù)此補(bǔ)全條形統(tǒng)計(jì)圖;

3自行乘車(chē)對(duì)應(yīng)扇形的圓心角的度數(shù)360°×126°;

4)估計(jì)該校家人接送上學(xué)的學(xué)生約有:2000×25%500(人).

解:(1)本次抽查的學(xué)生人數(shù):18÷15%120(人),

答:本次抽查的學(xué)生人數(shù)是120人;

2A:結(jié)伴步行人數(shù)12042301830(人),

補(bǔ)全條形統(tǒng)計(jì)圖如下:

結(jié)伴步行所占的百分比為×100%=25%自行乘車(chē)所占的百分比為×100%=35%,
自行乘車(chē)在扇形統(tǒng)計(jì)圖中占的度數(shù)為360°×35%=126°,補(bǔ)全扇形統(tǒng)計(jì)圖,如圖所示;

3自行乘車(chē)對(duì)應(yīng)扇形的圓心角的度數(shù)360°×126°,

故答案為126;

4)估計(jì)該校家人接送上學(xué)的學(xué)生約有:2000×25%500(人),

答:該校家人接送上學(xué)的學(xué)生約有500人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OEDE,點(diǎn)A、Dx軸的正半軸上,點(diǎn)Cy軸的正半軸上,點(diǎn)B、E在反比例函數(shù)y的圖象上,OA5,OC1,則△ODE的面積為( 。

A.2.5B.5C.7.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)正方形ABCD的頂點(diǎn)A在其外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對(duì)稱(chēng)點(diǎn)為E,連接BE、DE,其中DE交直線AP于點(diǎn)F

1)依題意補(bǔ)全圖1

2)若∠PAB30°,求∠ADF的度數(shù).

3)如圖,若45°<∠PAB90°,用等式表示線段ABFE,FD之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點(diǎn)P⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為(  )

A. 8 B. 6 C. 5 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分8分)

閱讀材料:

如圖,在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為P.

求證:S四邊形ABCD=

證明:AC⊥BD→

∴S四邊形ABCD=S△ACD+S△ACB=

=

解答問(wèn)題:

(1)上述證明得到的性質(zhì)可敘述為_(kāi)______________________________________.

(2)已知:如圖,等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述的性質(zhì)求梯形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),

沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B.已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn).連結(jié)MP,MQ,PQ.在整個(gè)運(yùn)動(dòng)過(guò)程中,△MPQ的面積大小變化情況是【 】

A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,點(diǎn)C (1,0).如圖17所示,B點(diǎn)在拋物線圖象上,過(guò)點(diǎn)BBDx軸,垂足為D,且B點(diǎn)橫坐標(biāo)為-3

1)求證:BDC≌△COA;

2)求BC所在直線的函數(shù)關(guān)系式;

3)拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使ACP是以AC為直角邊的直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】校園安全受到全社會(huì)的廣泛關(guān)注,東營(yíng)市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中基本了解部分所對(duì)應(yīng)扇形的圓心角為_(kāi)______°;

2請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到了解基本了解程度的總?cè)藬?shù);

4若從對(duì)校園安全知識(shí)達(dá)到了解程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一.部分,且過(guò)點(diǎn)(-3,0)(10),下列說(shuō)法錯(cuò)誤的是(

A.2a-b=0

B.4a-2bc<0.

C.(-4,y1)( ,y2)是拋物線上兩點(diǎn),則y1> y2

D.y <0時(shí),-3<x < 1

查看答案和解析>>

同步練習(xí)冊(cè)答案