【題目】一組數(shù)據(jù)2、3、6、8、x的眾數(shù)是x,其中x又是不等式組 的整數(shù)解,則這組數(shù)據(jù)的中位數(shù)可能是( )
A.3
B.4
C.6
D.3或6

【答案】D
【解析】解: ,
解不等式①得x>2,
解不等式②得x<7,
不等式組 的解為2<x<7,
故不等式組 的整數(shù)解為3,4,5,6.
∵一組數(shù)據(jù)2、3、6、8、x的眾數(shù)是x,
∴x=3或6.
如果x=3,排序后該組數(shù)據(jù)為2,3,3,6,8,則中位數(shù)為3;
如果x=6,排序后該組數(shù)據(jù)為2,3,6,6,8,則中位數(shù)為6.
故選D.
【考點(diǎn)精析】利用中位數(shù)、眾數(shù)對題目進(jìn)行判斷即可得到答案,需要熟知中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC90°,AB8BC6,點(diǎn)DAC邊上的動點(diǎn),點(diǎn)D從點(diǎn)C出發(fā),沿邊CA向點(diǎn)A運(yùn)動,當(dāng)運(yùn)動到點(diǎn)A時停止,若設(shè)點(diǎn)D運(yùn)動的時間為t秒.點(diǎn)D運(yùn)動的速度為每秒1個單位長度.

(1)當(dāng)t2時,CD , AD ;

(2)求當(dāng)t為何值時,△CBD是直角三角形,說明理由;

(3)求當(dāng)t為何值時,△CBD是以BDCD為底的等腰三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店在節(jié)日期間開展優(yōu)惠促銷活動:購買原價超過200元的商品,超過200元的部分可以享受打折優(yōu)惠.若購買商品的實(shí)際付款金額y(單位:元)與商品原價x(單位:元)的函數(shù)關(guān)系的圖象如圖所示,則超過200元的部分可以享受的優(yōu)惠是(
A.打八折
B.打七折
C.打六折
D.打五折

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,∠BAC與∠DCA的平分線相交于點(diǎn)G,GE⊥AC于點(diǎn)E,F(xiàn)為AC上的一點(diǎn),且FA=FG=FC,GH⊥CD于H.下列說法:①AG⊥CG;②∠BAG=∠CGE;③S△AFG=S△CFG;④若∠EGH︰∠ECH=2︰7,則∠EGF=50°.其中正確的有( )

A. ①②③④ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列證明過程補(bǔ)充完整:

已知:如圖,點(diǎn)B.E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,1=2,A=F.

求證:∠C=D.

證明:因?yàn)椤?/span>1=2(已知).

又因?yàn)椤?/span>1=ANC(______),

所以______(等量代換).

所以____________(同位角相等兩直線平行).

所以∠ABD=C(______).

又因?yàn)椤?/span>A=F(已知),

所以____________(______).

所以______(兩直線平行,內(nèi)錯角相等).

所以∠C=D(______).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,分別以AB、AD為邊向外作等邊ABE,ADF,延長CB交AE于點(diǎn)G,點(diǎn)G落在點(diǎn)A、E之間,連接EF、CF.則以下四個結(jié)論:CGAE;②△CDF≌△EBC;③∠CDF =EAF;④△ECF是等邊三角形.其中一定正確的是 .(把正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副直角三角板(含45°角的直角三角板ABC及含30°角的直角三角板DCB)按圖示方式疊放,斜邊交點(diǎn)為O,則△AOB與△COD的面積之比等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F.切點(diǎn)為G,連接AG交CD于K.
(1)求證:KE=GE;
(2)若KG2=KDGE,試判斷AC與EF的位置關(guān)系,并說明理由;
(3)在(2)的條件下,若sinE= ,AK=2 ,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=4,BC=3,點(diǎn)P在AB上.若將△DAP沿DP折疊,使點(diǎn)A落在矩形對角線上的A′處,則AP的長為

查看答案和解析>>

同步練習(xí)冊答案