【題目】如圖,在ABC中,AB=AC,B=30°,ADAB,交BC于點(diǎn)D,AD=4,則BC的長為( )

A. 8 B. 4 C. 12 D. 6

【答案】C

【解析】

由等腰三角形的性質(zhì)得出∠B=C=30°,BAD=90°;易證得∠DAC=C=30°,即CD=AD=4.RtABD中,根據(jù)30°角所對(duì)直角邊等于斜邊的一半,可求得BD=2AD=8;由此可求得BC的長.

AB=AC,

∴∠B=C=30°,

ABAD,

BD=2AD=2×4=8,

B+ADB=90°,

∴∠ADB=60°,

∵∠ADB=DAC+C=60°,

∴∠DAC=30°,

∴∠DAC=C,

DC=AD=4

BC=BD+DC=8+4=12,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,點(diǎn)A(-2,1)、B(-3,4),C(-5,2)均在格點(diǎn)上.在所給直角坐標(biāo)系中解答下列問題:

(1)將△ABC平移得到△A1B1C1,使得點(diǎn)B的對(duì)應(yīng)點(diǎn)B1與原點(diǎn)O重合,在所給直角坐標(biāo)系中畫出圖形;

(2)在圖中畫出△ABC關(guān)于y軸對(duì)稱的△A2B2C2;

(3)在x軸上找一點(diǎn)P,使得△PAB2的周長最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,AB=3,BC=4,E,F(xiàn)兩點(diǎn)分別在邊AB,BC上運(yùn)動(dòng),△BEF沿EF折疊后為△GEF,

(1)若BF=a,則線段AG的最小值為 . (用含a的代數(shù)式表示)
(2)問:在E、F運(yùn)動(dòng)過程中,取a= 時(shí),AG有最小值,值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正值重慶一中85年校慶之際,學(xué)校計(jì)劃利用校友慈善基金購買一些平板電腦和打印機(jī).經(jīng)市場(chǎng)調(diào)查,已知購買1臺(tái)平板電腦比購買3臺(tái)打印機(jī)多花費(fèi)600元,購買2臺(tái)平板電腦和3臺(tái)打印機(jī)共需8400元.

(1)求購買1臺(tái)平板電腦和1臺(tái)打印機(jī)各需多少元?

(2)學(xué)校根據(jù)實(shí)際情況,決定購買平板電腦和打印機(jī)共100臺(tái),要求購買的總費(fèi)用不超過168000元,且購買打印機(jī)的臺(tái)數(shù)不低于購買平板電腦臺(tái)數(shù)的2倍.請(qǐng)問最多能購買平板電腦多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB,CDEF相交于點(diǎn)O.

(1)寫出∠COE的鄰補(bǔ)角;

(2)分別寫出∠COE和∠BOE的對(duì)頂角;

(3)如果∠BOD60°,∠BOF90°,求∠AOF和∠FOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,DE平分∠ADB,則∠B=( )

A. 40° B. 30° C. 25° D. 22.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長為12,在其角上去掉兩個(gè)全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH頂點(diǎn)分別在正方形ABCD的邊上,且EH過N點(diǎn),則正方形EFGH的邊長是( )

A.10
B.3
C.4
D.3 或4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2x﹣3,點(diǎn)P在該函數(shù)的圖象上,點(diǎn)P到x軸、y軸的距離分別為d1、d2 . 設(shè)d=d1+d2 , 下列結(jié)論中: ①d沒有最大值;
②d沒有最小值;
③﹣1<x<3時(shí),d隨x的增大而增大;
④滿足d=5的點(diǎn)P有四個(gè).
其中正確結(jié)論的個(gè)數(shù)有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,工人師傅常用卡鉗這種工具測(cè)定工件內(nèi)槽的寬.卡鉗由兩根鋼條AABB組成,OAA、BB的中點(diǎn).只要量出AB的長度,由三角形全等就可以知道工件內(nèi)槽AB的長度.則判定OAB≌△OAB的依據(jù)是(

A. SASB. ASAC. SSSD. AAS

查看答案和解析>>

同步練習(xí)冊(cè)答案