【題目】對(duì)xy定義一種新運(yùn)算T,規(guī)定:T(xy)=ax+2by﹣1(其中a、b均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例如:T(0,1)=a0+2b1﹣1=2b﹣1.

(1)已知T(1,﹣1)=﹣2,T(4,2)=3.

①求a,b的值;

②若關(guān)于m的不等式組恰好有2個(gè)整數(shù)解,求實(shí)數(shù)p的取值范圍;

(2)若T(xy)=T(y,x)對(duì)任意實(shí)數(shù)x,y都成立(這里T(x,y)和T(y,x)均有意義),則a,b應(yīng)滿足怎樣的關(guān)系式?

【答案】1①a=1,b=3;②-2≤p-;(2a=2b

【解析】

試題(1按題意的運(yùn)算可得方程組,即可求得a、b的值;

按題意的運(yùn)算可得不等式組,即可求得p的取值范圍;

2)由題意可得ax+2by-1= ay+2bx-1,從而可得a="2b" ;

試題解析:(1由題意可得,解得;

由題意得,解得,因?yàn)樵坏仁浇M有2個(gè)整數(shù)解,所以, 所以;

2Tx,y="ax+2by-1," Ty,x="ay+2bx-1" ,所以ax+2by-1= ay+2bx-1,所以(a-2bax-a-2by=0,

a-2b)(x-y=0,所以a="2b" ;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分) 小麗想用一塊面積為400cm2的正方形紙片,沿著邊的方向裁處一塊面積為300cm2的長方形紙片.(1)請(qǐng)幫小麗設(shè)計(jì)一種可行的裁剪方案;

(2)若使長方形的長寬之比為3:2,小麗能用這塊紙片裁處符合要求的紙片嗎?若能,請(qǐng)幫小麗設(shè)計(jì)一種裁剪方案,若不能,請(qǐng)簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù) 的圖象與一次函數(shù) 的圖象交于點(diǎn)A(1,4)、點(diǎn)B(-4,n).

(1)求 的值;
(2)求△OAB的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(閱讀理解)

如圖(1),ADABC的中線,作ABC的高AH

ADABC的中線

BDCD

SABDBDAH,SACDCDAH

SABD   SACD(填:<或>或=)

2)(結(jié)論拓展)

ABC中,DBC邊上一點(diǎn),若,則   

3)(結(jié)論應(yīng)用)

如圖(3),請(qǐng)你將ABC分成4個(gè)面積相等的三角形(畫出分割線即可)

如圖(4),BEABC的中線,FAB邊上一點(diǎn),連接CFBE于點(diǎn)O,若,則   .說明你的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC≌△DEFDFBC,且∠B60°,∠F40°,點(diǎn)ADE上,則∠BAD的度數(shù)為_________°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn).圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:

(1)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系,并結(jié)合圖2加以證明;
(2)三角板繞點(diǎn)P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長);若不能,請(qǐng)說明理由;
(3)若將三角板的直角頂點(diǎn)放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖4加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進(jìn)行兩次折疊,展平后,得折痕AD,BE(如圖①),點(diǎn)O為其交點(diǎn).

(1)探求AO到OD的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動(dòng)點(diǎn).
(Ⅰ)當(dāng)PN+PD的長度取得最小值時(shí),求BP的長度;
(Ⅱ)如圖③,若點(diǎn)Q在線段BO上,BQ=1,則QN+NP+PD的最小值=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知一個(gè)多邊形的內(nèi)角和是它的外角和的 3 倍,求這個(gè)多邊形的邊數(shù).

(2)如圖,點(diǎn)F ABC 的邊 BC 延長線上一點(diǎn).DFAB,A=30°,F=40°,求∠ACF 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求,解答下列問題.

1)解下列方程組(直接寫出方程組的解即可):

A. B. C.

方程組A的解為   ,方程組B的解為   ,方程組C的解為   ;

2)以上每個(gè)方程組的解中,x值與y值的大小關(guān)系為   ;

3)請(qǐng)你構(gòu)造一個(gè)具有以上外形特征的方程組,并直接寫出它的解.

查看答案和解析>>

同步練習(xí)冊(cè)答案