【題目】圖1是一個(gè)長為2m,寬為2n的長方形,將該長方形沿圖中虛線用剪刀均分成四塊小長方形,然后按照圖2所示拼成一個(gè)正方形.
(1)使用不同方法計(jì)算圖2中小正方形的面積,可推出(m+n)2,(m-n)2,mn之間的等量關(guān)系為: ;
(2)利用(1)中的結(jié)論,解決下列問題:
①已知a-b=4,ab=5,求a+b的值;
②已知a>0,a-=2,求a+的值.
【答案】(1)(m-n)2=(m+n)2-4mn;(2)①6或-6;②4.
【解析】
(1)由題意知,陰影部分小正方形的邊長為m-n.根據(jù)正方形的面積公式即可求出圖中陰影部分的面積,也可以用大正方形的面積減去四個(gè)小長方形的面積求圖中陰影部分的面積,
利用兩種求法確定出所求關(guān)系式即可;
(2)①利用(1)的結(jié)論,可知(a-b)2=(a+b)2-4ab,把已知數(shù)值整體代入即可;②先利用完全平方公式進(jìn)行變形,即將a-=2兩邊同時(shí)平方,然后求出(a+)2的值,從而得出結(jié)果.
解:(1)陰影部分的面積可以看作是邊長m-n的正方形的面積,也可以看作邊長m+n的正方形的面積減去4個(gè)小長方形的面積,
∴(m-n)2=(m+n)2-4mn,
故答案為:(m-n)2=(m+n)2-4mn;
(2)①∵a-b=4,ab=5,且由(1)知(a-b)2=(a+b)2-4ab,
∴(a+b)2=16+20=36,
∴a+b=6或-6;
②∵a-=2,
∴(a-)2= a2-6+=4,
∴a2+6+=16,
∴(a+)2=16,
又a>0,∴a+=4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(-1,5),B(-1,0),C(-4,3).
(Ⅰ)求△ABC的面積;
(Ⅱ)在圖中作出△ABC關(guān)于軸的對稱圖形△A1B1C1,并寫出點(diǎn)A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請直接寫出點(diǎn)F的坐標(biāo);
(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求△ACQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”.如4=22﹣02,12=42﹣22,20=62﹣42,因此 4,12,20 都是“神秘?cái)?shù)”,則下面哪個(gè)數(shù)是“神秘?cái)?shù)”( )
A.56B.60C.62D.88
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)可以表示為兩個(gè)連續(xù)奇數(shù)的平方差,那么稱該正整數(shù)為“和諧數(shù)”如(8=32﹣12,16=52﹣32,即8,16均為“和諧數(shù)”),在不超過2017的正整數(shù)中,所有的“和諧數(shù)”之和為( 。
A. 255054 B. 255064 C. 250554 D. 255024
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出各點(diǎn)的坐標(biāo);
(2)若把△ABC向上平移2個(gè)單位,再向左平移1個(gè)單位得到,在圖中畫出三角形ABC變化后的位置,寫出A′、B′、C′的坐標(biāo);
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.
(1)求∠BED的度數(shù);
(2)判斷BE與AC的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點(diǎn).
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王先生到市行政中心大樓辦事,假定乘電梯向上一樓記作+1,向下一樓記作-1,王先生從1樓出發(fā),電梯上下樓層依次記錄如下(單位:層):.
(1)請你通過計(jì)算說明王先生最后是否回到出發(fā)點(diǎn)樓.
(2)該中心大樓每層高3m,電梯每向上或下1m需要耗電0.3度,根據(jù)王先生現(xiàn)在所處位置,請你算算,他辦事時(shí)電梯需要耗電多少度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com