【題目】如圖1,已知拋物線y=ax2+bx+c的頂點為P(1,9),與x軸的交點為A(﹣2,0),B.
(1)求拋物線的解析式;
(2)M為x軸上方拋物線上的一點,MB與拋物線的對稱軸交于點C,若∠COB=2∠CBO,求點M的坐標;
(3)如圖2,將原拋物線沿對稱軸平移后得到新拋物線為y=ax2+bx+h,E,F新拋物線在第一象限內(nèi)互不重合的兩點,EG⊥x軸,FH⊥x軸,垂足分別為G,H,若始終存在這樣的點E,F,滿足△GEO≌△HOF,求h的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)設(shè)該拋物線解析式為,將點的坐標代入求得的值即可;
(2)作原點關(guān)于直線的對稱點,連接,則,結(jié)合三角形外角定理推知,故.由勾股定理求得線段的長度,則.由待定系數(shù)法確定直線解析式為,與拋物線聯(lián)立得到:.由此求得點坐標;
(3)設(shè),,,,由全等三角形的對應(yīng)邊相等和二次函數(shù)圖象上點的坐標特征建立與或的函數(shù)關(guān)系式,從而求的取值范圍.
解:(1)拋物線的頂點為,
設(shè)該拋物線解析式為,
把代入拋物線解析式得,,
;
(2)令得,,或,
,
拋物線對稱軸直線與軸交點為,
如圖1,作原點關(guān)于直線的對稱點,連接,
則,
,
,
.
.
.
設(shè)直線的解析式為,
則,
解得,.
直線解析式為,
與拋物線聯(lián)立得.
,.
,
故點坐標為;
(3)如圖2,設(shè),,,,
,
,,
,
設(shè)新拋物線解析式為,
把點,的坐標代入拋物線的解析式得:,,
即,,
,,,
,
,,
,,,
且
把代入,得.
且.
.
故的取值范圍.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位線,點D在AB上,把點B繞點D按順時針方向旋轉(zhuǎn)α(0°<α<180°)角得到點F,連接AF,BF.下列結(jié)論:①△ABF是直角三角形;②若△ABF和△ABC全等,則α=2∠BAC或2∠ABC;③若α=90°,連接EF,則S△DEF=4.5;其中正確的結(jié)論是( )
A.①②B.①③C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(6,0),B(﹣2,0),C(0,4).
(1)求二次函數(shù)y=ax2+bx+c的表達式;
(2)點P在第一象限的拋物線上,且能夠使△ACP得面積最大,求點P的坐標;
(3)在(2)的前提下,在拋物線的對稱軸上是否存在點Q,使得△APQ為直角三角形,若存在,直接寫出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,附中初級老師們?yōu)榱私夂⒆觽冊诩颐恐荏w育鍛煉打卡情況,收集部分數(shù)據(jù)并繪制了如下尚不完整的參與打卡人數(shù)與堅持打卡天數(shù)的條形統(tǒng)計圖和扇形統(tǒng)計圖:
通過分析上面個統(tǒng)計圖,制作如下表格:
統(tǒng)計量 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
天數(shù) | 4.4 | a | b |
(1)填空:_______,_______,并補全條形統(tǒng)計圖.
(2)因為疫情期間,在家體育鍛煉條件受限,所以規(guī)定堅持打卡不低于天即為合格.初級共有學(xué)生人,請你估計初級學(xué)生中體育鍛煉合格的人數(shù).
(3)若統(tǒng)計時漏掉名學(xué)生,先將他的打卡天數(shù)和原統(tǒng)計的打卡天數(shù)合并成一組新數(shù)據(jù)后,發(fā)現(xiàn)平均數(shù)增大了,則漏掉的這名學(xué)生堅持打卡天數(shù)最少是多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)全體同學(xué)參加了“關(guān)懷貧困學(xué)生”愛心捐款活動,該校隨機抽查了七、八、九三個年級部分學(xué)生捐款情況,將結(jié)果繪制成兩幅不完整的統(tǒng)計圖.根據(jù)圖中的信息,解決下列問題:
(1)這次共抽查了_______名學(xué)生進行統(tǒng)計,其中類所對應(yīng)扇形的圓心角的度數(shù)為________;
(2)將條形統(tǒng)計圖補充完整;
(3)該校有名學(xué)生,估計該校捐款元的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了運送防疫物資,甲、乙兩貨運公司各派出一輛卡車,分別從距目的地240千米和270千米的兩地同時出發(fā),馳援疫區(qū).已知乙公司卡車的平均速度是甲公司卡車的平均速度的1.5倍,甲公司的卡車比乙公司的卡車晚1小時到達目的地,分別求甲、乙兩貨運公司卡車的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.
(1)請判斷該方程實數(shù)根的情況;
(2)若原方程的兩實數(shù)根為,,且滿足,求p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“世界讀書日”前夕,某校開展了“讀書助我成長”的閱讀活動.為了了解該校學(xué)生在此次活動中課外閱讀書籍的數(shù)量情況,隨機抽取了部分學(xué)生進行調(diào)查,將收集到的數(shù)據(jù)進行整理,繪制出兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖信息解決下列問題:
(1)求本次調(diào)查中共抽取的學(xué)生人數(shù);
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,閱讀本書籍的人數(shù)所在扇形的圓心角度數(shù)是 ;
(4)若該校有名學(xué)生,估計該校在這次活動中閱讀書籍的數(shù)量不低于本的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,E為矩形ABCD的邊AD上一點,動點P、Q同時從點B出發(fā),點P以1cm/秒的速度沿折線BE-ED-DC運動到點C時停止,點Q以2cm/秒的速度沿BC運動到點C時停止,設(shè)P、Q同時出發(fā)t秒時,BPQ的面積為ycm2,已知y與t的函數(shù)關(guān)系圖象如圖2所示(其中曲線OG為拋物線的一部分,其余各部分均為線段)所示,則下列結(jié)論:①BEBC;②當(dāng)t6秒時,ABE PQB;③點P運動了18秒;④當(dāng)t秒時,ABE∽QBP.其中正確的是( ).
A.①②B.①③④C.③④D.①②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com