【題目】如圖,矩形ABCD中,AB=8,AD=3.點E從D向C以每秒1個單位的速度運動,以AE為一邊在AE的右下方作正方形AEFG.同時垂直于CD的直線MN也從C向D以每秒2個單位的速度運動,當經(jīng)過多少秒時.直線MN和正方形AEFG開始有公共點?( )
A. B. C. D.
【答案】A
【解析】
試題設(shè)經(jīng)過x秒時,直線MN和正方形AEFG恰好開始有公共點,過點F作FQ⊥CD于點Q,如圖:
即設(shè)經(jīng)過x秒時,直線MN恰好經(jīng)過點F,所以DE=x,CM=CQ=2x
因為在正方形AEFG中,∠AEF=90°,AE=EF,
所以∠1+∠2=90°,
又∠DAE+∠1=90°,
所以∠DAE=∠2,
在△ADE和△EQF中,∠D=∠FQE,∠DAE=∠QEF,AE=EF,
所以△ADE≌△EQF(AAS),
所以AD=EQ=3,
所以當DE+EQ+CQ=8時,直線MN和正方形AEFG開始有公共點,
所以x+3+2x=8,所以x=,故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,E、F分別為BC,CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交AD于點M,交BA的延長線于點Q.連接BM,下列結(jié)論中:①AE=BF; ②AE⊥BF;③AQ=;④∠MBF=60°.
正確的結(jié)論是_____(填正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù))
(1)該函數(shù)的圖像與軸公共點的個數(shù)是( )
A.0 B.1 C.2 D.1或2
(2)求證:不論為何值,該函數(shù)的圖像的頂點都在函數(shù)的圖像上.
(3)當時,求該函數(shù)的圖像的頂點縱坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某科技公司用480萬元購得某種產(chǎn)品的生產(chǎn)技術(shù)后,并進一步投入資金1520萬元購買生產(chǎn)設(shè)備,進行該產(chǎn)品的生產(chǎn)加工.已知生產(chǎn)這種產(chǎn)品每件還需成本費40元.經(jīng)過市場調(diào)研發(fā)現(xiàn):該產(chǎn)品的銷售單價不低于100元,但不超過180元.設(shè)銷售單價為(元),年銷售量為(萬件),年獲利為(萬元),該產(chǎn)品年銷售量(萬件)與產(chǎn)品售價(元)之間的函數(shù)關(guān)系如圖所示.
(1)求與之間的函數(shù)表達式,并寫出的取值范圍;
(2)求第一年的年獲利與之間的函數(shù)表達式,并說明投資的第一年,該公司是盈利還是虧損?并求當盈利最大或虧損最小時的產(chǎn)品售價;
(3)在(2)的條件下.即在盈利最大或虧損最小時,第二年公司重新確定產(chǎn)品售價,能否使兩年共盈利不低于1370萬元?若能,求出第二年的售價在什么范圍內(nèi);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點A測得大樹頂端B的仰角是45°,沿斜坡走米到達斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為1:2(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60).
(1)求小明從點A走到點D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 擲一枚均勻的骰子,骰子停止轉(zhuǎn)動后,5點朝上是必然事件
B. 明天下雪的概率為,表示明天有半天都在下雪
C. 甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩(wěn)定
D. 了解一批充電寶的使用壽命,適合用普查的方式
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調(diào)查中,喜歡籃球項目的同學有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學校有800名學生,估計全校學生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調(diào)查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚我國古代數(shù)學發(fā)展的偉大成就,某校九年級進行了一次數(shù)學知識競賽,并設(shè)立了以我國古代數(shù)學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據(jù)獲獎情況繪制成如圖1和圖2所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,并得到了獲“祖沖之獎”的學生成績統(tǒng)計表:
“祖沖之獎”的學生成績統(tǒng)計表:
分數(shù)分 | 80 | 85 | 90 | 95 |
人數(shù)人 | 4 | 2 | 10 | 4 |
根據(jù)圖表中的信息,解答下列問題:
這次獲得“劉徽獎”的人數(shù)是多少,并將條形統(tǒng)計圖補充完整;
獲得“祖沖之獎”的學生成績的中位數(shù)是多少分,眾數(shù)是多少分;
在這次數(shù)學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數(shù)字“”,“”和“2”,隨機摸出一個小球,把小球上的數(shù)字記為x放回后再隨機摸出一個小球,把小球上的數(shù)字記為y,把x作為橫坐標,把y作為縱坐標,記作點用列表法或樹狀圖法求這個點在第二象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在△ABC中,∠BAC=90°,M是邊BC的中點,BC的延長線上的點N滿足AM⊥AN.△ABC的內(nèi)切圓與邊AB、AC的切點分別為E、F,延長EF分別與AN、BC的延長線交于P、Q,則=( 。
A. 1B. 0.5C. 2D. 1.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com