【題目】在一塊長(zhǎng),寬為的矩形荒地上,要建造一個(gè)花園,要求花園面積是荒地面積的一半,下面分別是小華與小芳的設(shè)計(jì)方案.
()小芳說(shuō),‘我的設(shè)計(jì)方案如圖所示,平行于荒地的四邊建造矩形的花園,花園四周小路的寬度均相同’,你能幫小芳算出小路的寬度嗎?請(qǐng)利用方程的方法計(jì)算出小路的寬度.
()小華說(shuō),‘我的設(shè)計(jì)方案是建造一個(gè)中心對(duì)稱的四邊形的花園,并且這個(gè)四邊形的四個(gè)頂點(diǎn)分別在矩形荒地的四條邊上’,請(qǐng)你按小華的思路,分別設(shè)計(jì)符合條件的一個(gè)菱形和一個(gè)矩形,在圖和圖中畫(huà)出相應(yīng)的草圖,說(shuō)明所畫(huà)圖形的特征,并簡(jiǎn)述所畫(huà)圖形符合要求的理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖3,小明有5張寫(xiě)著不同數(shù)字的卡片,請(qǐng)你按要求抽出卡片,完成下列問(wèn)題.
(1)從中抽取2張卡片,使這2張卡片上數(shù)字的乘積最大,最大值是多少?寫(xiě)出最大值的運(yùn)算式;
(2)從中抽取2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是多少?寫(xiě)出最小值的運(yùn)算式;
(3)從中抽取除0以外的4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除、乘方混合運(yùn)算,每個(gè)數(shù)字只能用一次,使結(jié)果為24.寫(xiě)出兩種運(yùn)算式子.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某服裝廠生產(chǎn)一種西裝和領(lǐng)帶,西裝每套定價(jià)1200元,領(lǐng)帶每條定價(jià)140元.廠方在開(kāi)展促銷活動(dòng)期間,可以同時(shí)向客戶提供兩種優(yōu)惠方案:
①買(mǎi)一套西裝送一條領(lǐng)帶
②西裝和領(lǐng)帶都按定價(jià)的付款,現(xiàn)某客戶要到該服裝廠購(gòu)買(mǎi)西裝20套,領(lǐng)帶條(超過(guò)20)
(1)若該客戶按方案①購(gòu)買(mǎi),需付款_________元(用含的式子表示);若該客戶按方案②購(gòu)買(mǎi),需付款_________元(用含的式子表示)
(2)若,通過(guò)計(jì)算說(shuō)明此時(shí)按哪種方案購(gòu)買(mǎi)較為合算?
(3)若時(shí),你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?試寫(xiě)出你的購(gòu)買(mǎi)方法,并計(jì)算出所需的錢(qián)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(m,2)在直線:y=2x上,過(guò)點(diǎn)A的直線與x軸交于點(diǎn)B(4,0).
(1)求直線的解析式;
(2)己知點(diǎn)P.的坐標(biāo)為(n,0),過(guò)點(diǎn)P垂直x軸的直線與,分別交于點(diǎn)C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=2,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒1個(gè)單位的速度在正方形的邊上沿BC-CD-DA運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,△PAB面積為S.
(1)求S關(guān)于t的函數(shù)解析式,并寫(xiě)出自變量t的取值范圍;
(2)畫(huà)出相應(yīng)函數(shù)圖象;
(3)當(dāng)S=時(shí),t的值為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探索發(fā)現(xiàn))有絕對(duì)值的定義可得,數(shù)軸上表示數(shù)的點(diǎn)到原點(diǎn)的距離為.小麗進(jìn)一步探究發(fā)現(xiàn),在數(shù)軸上,表示3和5的兩點(diǎn)之間的距離為;表示和5的兩點(diǎn)之間的距離為;表示和的兩點(diǎn)之間的距離為.
(概括總結(jié))根據(jù)以上過(guò)程可以得出:數(shù)軸上,表示數(shù)和數(shù)的兩點(diǎn)之間的距離為.
(問(wèn)題解決)
(1)若,則________;
(2)若,則________;
(3)若,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)數(shù)學(xué)家華羅庚在一次出國(guó)訪問(wèn)途中,看到飛機(jī)上鄰座的乘客閱讀的雜志上有一道智力題,求的立方根.華羅庚脫口而出,你知道怎樣迅速準(zhǔn)確地計(jì)算出結(jié)果的嗎?請(qǐng)按照下面的問(wèn)題試一試:
(1)由,確定的立方根是 位數(shù);
(2)由的個(gè)位數(shù)是確定的立方根的個(gè)位數(shù)是 ;
(3)如果劃去后面的三位得到數(shù),而,由此能確定的立方根的十位數(shù)是 ;所以的立方根是 ;
(4)用類似的方法,請(qǐng)說(shuō)出的立方根是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AB的垂直平分線DE分別交AC、AB于點(diǎn)D、E.
(1)若∠A=46°,求∠CBD的度數(shù);
(2)若AB=8,△CBD周長(zhǎng)為13,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知直線EF分別與直線AB,CD相交于點(diǎn)E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD.
(1)求證:∠EMF=90°.
(2)如圖2,若FN平分∠MFD交EM的延長(zhǎng)線于點(diǎn)N,且∠BEN與∠EFN的比為4:3,求∠N的度數(shù).
(3)如圖3,若點(diǎn)H是射線EA之間一動(dòng)點(diǎn),FG平分∠HFE,過(guò)點(diǎn)G作GQ⊥EM于點(diǎn)Q,請(qǐng)猜想∠EHF與∠FGQ的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com