【題目】如圖,一塊長(zhǎng)和寬分別為30cm和20cm的矩形鐵皮,要在它的四角截去四個(gè)邊長(zhǎng)相等的小正方形,折成一個(gè)無(wú)蓋的長(zhǎng)方體盒子,使它的側(cè)面積為272cm2,則截去的正方形的邊長(zhǎng)是( )cm
A.4cmB.8.5cmC.4cm或8.5cmD.5cm或7.5cm
【答案】C
【解析】
設(shè)截去的正方形的邊長(zhǎng)為xcm,對(duì)于該長(zhǎng)方形鐵皮,四個(gè)角各截去一個(gè)邊長(zhǎng)為x厘米的小正方形,長(zhǎng)方體底面的長(zhǎng)和寬分別是(302x)cm和(202x)cm,側(cè)面積為2x[(302x)+(202x)]cm2,根據(jù)長(zhǎng)方體的側(cè)面積為272cm2列方程求出x的值即可.
解:設(shè)截去正方形的邊長(zhǎng)為xcm,
依題意有:2x[(302x)+(202x)]=272,
解得x1=4,x2=8.5,
即截去的正方形的邊長(zhǎng)是4cm或8.5cm.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是一垂直于水平面的建筑物,某同學(xué)從建筑物底端B出發(fā),先沿水平方向向右行走20米到達(dá)點(diǎn)C,再經(jīng)過(guò)一段坡度(或坡比)為i=1:0.75、坡長(zhǎng)為10米的斜坡CD到達(dá)點(diǎn)D,然后再沿水平方向向右行走40米到達(dá)點(diǎn)E(A,B,C,D,E均在同一平面內(nèi)).在E處測(cè)得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( 。
A. 21.7米 B. 22.4米 C. 27.4米 D. 28.8米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有50個(gè)房間供游客居住,當(dāng)每個(gè)房間定價(jià)120元時(shí),房間會(huì)全部住滿,當(dāng)每個(gè)房間每天的定價(jià)每增加10元時(shí),就會(huì)有一個(gè)房間空閑,如果游客居住房間,賓館需對(duì)每個(gè)房間每天支出20元的各種費(fèi)用.設(shè)每個(gè)房間定價(jià)增加10x元(x為整數(shù)).
(1)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式;
(2)設(shè)賓館每天的利潤(rùn)為w元,當(dāng)每間房?jī)r(jià)定價(jià)為多少元時(shí),賓館每天所獲利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點(diǎn)A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達(dá)式;
(2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)B的坐標(biāo),并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是中國(guó)傳統(tǒng)數(shù)學(xué)最重要的著作,在“勾股”章中有這樣一個(gè)問(wèn)題:“今有邑方二百步,各中開門,出東門十五步有木,問(wèn):出南門幾步而見木?”
用今天的話說(shuō),大意是:如圖,是一座邊長(zhǎng)為200步(“步”是古代的長(zhǎng)度單位)的正方形小城,東門位于的中點(diǎn),南門位于的中點(diǎn),出東門15步的處有一樹木,求出南門多少步恰好看到位于處的樹木(即點(diǎn)在直線上)?請(qǐng)你計(jì)算的長(zhǎng)為__________步.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:在1~n(n ≥2)這n個(gè)自然數(shù)中,每次取兩個(gè)數(shù)(不分順序),使得所取兩數(shù)之和大于n,共有多少種取法?
探究:不妨設(shè)有m種取法,為了探究m與n的關(guān)系,我們先從簡(jiǎn)單情形入手,再逐次遞進(jìn),最后猜想得出結(jié)論.
探究一:在1~2這2個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于2,有多少種取法?
根據(jù)題意,有下列取法:1+2,共1種取法.
所以,當(dāng)n=2時(shí),m=1.
探究二:在1~3這3個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于3,有多少種取法?
根據(jù)題意,有下列取法:1+3,2+3,共2種取法.
所以,當(dāng)n=3時(shí),m=2.
探究三:在1~4這4個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于4,有多少種取法?
根據(jù)題意,有下列取法:1+4,2+4,3+4,2+3,共有3+1=4種取法.
所以,當(dāng)n=4時(shí),m=3+1=4.
探究四:在1~5這5個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于5,有多少種取法?
根據(jù)題意,有下列取法:1+5, 2+5, 3+5, 4+5,2+4,3+4,共有4+2=6種不同的取法.
所以,當(dāng)n=5時(shí),m=4+2=6.
探究五:在1~6這6個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù)(不分順序),使得所取的兩個(gè)數(shù)之和大于6,有多少種不同的取法?(仿照上述探究方法,寫出解答過(guò)程)
探究六:在1~7這7個(gè)自然數(shù)中,每次取兩個(gè)不同的數(shù),使得所取的兩個(gè)數(shù)之和大于7,共有 種取法?(直接寫出結(jié)果)
不妨繼續(xù)探究n=8,9,···時(shí),m與n的關(guān)系.
結(jié)論:在1~n這n個(gè)自然數(shù)中,每次取兩個(gè)數(shù),使得所取的兩個(gè)數(shù)字之和大于n,當(dāng)n為偶數(shù)時(shí),共有___種取法;當(dāng)n為奇數(shù)時(shí),共有___種取法;(只填最簡(jiǎn)算式)
應(yīng)用:(1)各邊長(zhǎng)都是自然數(shù),最大邊長(zhǎng)為11的不等邊三角形共有 個(gè)
(2)各邊長(zhǎng)都是自然數(shù),最大邊長(zhǎng)為12的三角形共有 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,,為的中點(diǎn),若動(dòng)點(diǎn)從點(diǎn)出發(fā),沿著的方向運(yùn)動(dòng),連接,當(dāng)是直角三角形時(shí),的值為( )
A.4B.7C.4或7D.4或1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李的活魚批發(fā)店以 44 元/公斤的價(jià)格從港口買進(jìn)一批 2000 公斤的某品種活魚,在運(yùn)輸過(guò)程中,有部分魚未能存活,小李對(duì)運(yùn)到的魚進(jìn)行隨機(jī)抽查,結(jié)果如表一.由于 市場(chǎng)調(diào)節(jié),該品種活魚的售價(jià)與日銷售量之間有一定的變化規(guī)律,表二是近一段時(shí)間該批發(fā)店的銷售記錄.
表一
所抽查的魚的總重量 m(公斤) | 100 | 150 | 200 | 250 | 350 | 450 | 500 |
存活的魚的重量與 m 的比值 | 0.885 | 0.876 | 0.874 | 0.878 | 0.871 | 0.880 | 0.880 |
表二
該品種活魚的售價(jià)(元/公斤) | 50 | 51 | 52 | 53 | 54 |
該品神活魚的日銷售量(公斤) | 400 | 360 | 320 | 280 | 240 |
(1)請(qǐng)估計(jì)運(yùn)到的 2000 公斤魚中活魚的總重量;(直接寫出答案)
(2)按此市場(chǎng)調(diào)節(jié)的觀律,
①若該品種活魚的售價(jià)定為 52.5 元/公斤,請(qǐng)估計(jì)日銷售量,并說(shuō)明理由;
②考慮到該批發(fā)店的儲(chǔ)存條,小李打算 8 天內(nèi)賣完這批魚(只賣活魚),且售價(jià)保持 不變,求該批發(fā)店每日賣魚可能達(dá)到的最大利潤(rùn),并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB=30°.
(1)求∠APB的度數(shù);
(2)當(dāng)OA=3時(shí),求AP的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com