【題目】綜合與實(shí)踐:
如圖1,已知△ABC為等邊三角形,點(diǎn)D,E分別在邊AB、AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想:在圖1中,線段PM與PN的數(shù)量關(guān)系是 ,∠MPN的度數(shù)是 ;
(2)探究證明:把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,
①判斷△PMN的形狀,并說(shuō)明理由;
②求∠MPN的度數(shù);
(3)拓展延伸:若△ABC為直角三角形,∠BAC=90°,AB=AC=10,點(diǎn)DE分別在邊AB,AC上,AD=AE=4,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),如圖3,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
【答案】(1)PM=PN;120°;(2)①△PMN是等腰三角形,理由見(jiàn)解析;②120°;(3) ;
【解析】
(1)根據(jù)三角形中位線的性質(zhì)可證明PN∥BD,PM∥EC,PN=BD,PM=CE,由AD=AE即可證明PM=PN,根據(jù)平行線性質(zhì)及外角性質(zhì)可證明∠MPN=∠B+∠ACB=120°;(2)①連接BD、CE,可證明△BAD≌△CAE,可知BD=CE,∠ABD=∠ACE,根據(jù)三角形中位線可知PN∥BD,PM∥EC,PN=BD,PM=CE,可知PN=PM即可判斷△PMN是等腰三角形.②由平行線的性質(zhì)可知∠PNC=∠DBC,∠DPM=∠A=ECD,進(jìn)而可求出∠MPN=120°,(3)由旋轉(zhuǎn)知,∠BAD=∠CAE,可證明△ABD≌△ACE(SAS),可知∠ABD=∠ACE,BD=CE,通過(guò)(2)的方法可證PM=PN,∠DPM=∠DCE,∠PNC=∠DBC
根據(jù)外角性質(zhì)可證明∠MPN=∠ABC+∠ACB,進(jìn)而可知△PMN是等腰直角三角形,求△PMN面積的最大值即可.
(1)如圖1中,
∵AB=AC=BC,AD=AE,
∴BD=CE,∠B=∠ACB=60°,
∵點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn),
∴PN∥BD,PM∥EC,PN=BD,PM=CE,
∴PN=PM,∠PNC=∠B,∠DPM=∠ACD,
∴∠MPN=∠MPD+∠DPN=∠ACD+∠PNC+∠DCB=∠ACD+∠DCB+∠B=∠ACB+∠B=120°,
故答案為PM=PN,120°.
(2)如圖2中,連接BD、EC.
①∵∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
∵BA=CA,DA=EA,
∴△BAD≌△CAE,
∴BD=CE,∠ABD=∠ACE,
∵點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn),
∴PN∥BD,PM∥EC,PN=BD,PM=CE,
∴PN=PM,
∴△PMN是等腰三角形.
②∵PN∥BD,PM∥EC
∴∠PNC=∠DBC,∠DPM=∠A=ECD,
∴∠MPN=∠MPD+∠DPN=∠ECD+∠PNC+∠DCB=∠ECD+∠DCB+∠DBC=∠ACE+ACD+∠DCB+∠DBC=∠ABD+∠ACB+∠DBC=∠ACB+∠ABC=120°.
(3)如圖3中,
由旋轉(zhuǎn)知,∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,BD=CE,
同(2)的方法,利用三角形的中位線得,PN=BD,PM=CE,
∴PM=PN,
同(2)的方法得,PM∥CE,
∴∠DPM=∠DCE,
同(2)的方法得,PN∥BD,
∴∠PNC=∠DBC
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC
=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC
=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,
∴∠ACB+∠ABC=90°,
∴∠MPN=90°,
∴△PMN是等腰直角三角形,
∵PM=PN=BD,
∴BD最大時(shí),PM最大,△PMN面積最大,
∴點(diǎn)D在BA的延長(zhǎng)線上,
∴BD=AB+AD=14,
∴PM=7,
∴S△PMN最大=PM2=×72=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,把一張正方形紙片對(duì)折得到長(zhǎng)方形ABCD,再沿∠ADC的平分線DE折疊,如圖2,點(diǎn)C落在點(diǎn)C′處,最后按圖3所示方式折疊,使點(diǎn)A落在DE的中點(diǎn)A′處,折痕是FG,若原正方形紙片的邊長(zhǎng)為9cm,則FG=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,分別過(guò)B,C向經(jīng)過(guò)點(diǎn)A的直線EF作垂線,垂足為E,F.
(1)如圖1,當(dāng)EF與斜邊BC不相交時(shí),請(qǐng)證明EF=BE+CF;
(2)如圖2,當(dāng)EF與斜邊BC相交時(shí),其他條件不變,寫(xiě)出EF、BE、CF之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖3,猜想EF、BE、CF之間又存在怎樣的數(shù)量關(guān)系,寫(xiě)出猜想,不必說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時(shí),連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長(zhǎng)度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2016廣西南寧市)在南寧市地鐵1號(hào)線某段工程建設(shè)中,甲隊(duì)單獨(dú)完成這項(xiàng)工程需要150天,甲隊(duì)單獨(dú)施工30天后增加乙隊(duì),兩隊(duì)又共同工作了15天,共完成總工程的.
(1)求乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?
(2)為了加快工程進(jìn)度,甲、乙兩隊(duì)各自提高工作效率,提高后乙隊(duì)的工作效率是,甲隊(duì)的工作效率是乙隊(duì)的m倍(1≤m≤2),若兩隊(duì)合作40天完成剩余的工程,請(qǐng)寫(xiě)出a關(guān)于m的函數(shù)關(guān)系式,并求出乙隊(duì)的最大工作效率是原來(lái)的幾倍?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)對(duì)今年端午節(jié)這天銷售A、B、C三種品牌粽子的情況進(jìn)行了統(tǒng)計(jì),繪制如圖1和圖2所示的統(tǒng)計(jì)圖.根據(jù)圖中信息解答下列問(wèn)題:
(1)求銷售這三種品牌粽子共多少個(gè)?
(2)請(qǐng)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(3)求A品牌粽子在圖2中所對(duì)應(yīng)的圓心角的度數(shù);
(4)若該商場(chǎng)準(zhǔn)備明年端午節(jié)期間購(gòu)進(jìn)粽子6000個(gè),那應(yīng)該對(duì)A、B、C三種品牌何進(jìn)貨?請(qǐng)你提出一條合理化的建議
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
老舍先生曾說(shuō)“天堂是什么樣子,我不曉得,但從我的生活經(jīng)驗(yàn)去判斷,北平之秋便是天堂!保ㄕ浴蹲〉膲(mèng)》)金黃色的銀杏葉為北京的秋增色不少。
小宇家附近新修了一段公路,他想給市政寫(xiě)信,建議在路的兩邊種上銀杏樹(shù)。他先讓爸爸開(kāi)車駛過(guò)這段公路,發(fā)現(xiàn)速度為60千米/小時(shí),走了約3分鐘,由此估算這段路長(zhǎng)約_______千米。
然后小宇查閱資料,得知銀杏為落葉大喬木,成年銀杏樹(shù)樹(shù)冠直徑可達(dá)8米。小宇計(jì)劃從路的起點(diǎn)開(kāi)始,每a米種一棵樹(shù),繪制示意圖如下:
考慮到投入資金的限制,他設(shè)計(jì)了另一種方案,將原計(jì)劃的a擴(kuò)大一倍,則路的兩側(cè)共計(jì)減少200棵樹(shù),請(qǐng)你求出a的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料后完成.
有這樣一個(gè)游戲,游戲規(guī)則如下所述:如圖①—圖④,都是邊 長(zhǎng)為的網(wǎng)格圖,其中每條實(shí)線稱為格線,格線與格線的交 點(diǎn)稱為格點(diǎn).在圖①和圖②中,可知.在圖③ 和圖④中,可知. 根據(jù)上面的游戲規(guī)則,同學(xué)們開(kāi)始闖關(guān)吧! 第一關(guān):在圖⑤的網(wǎng)格圖中,所給各點(diǎn)均為格點(diǎn),經(jīng)過(guò) 給定的一點(diǎn)(不包括邊框上的點(diǎn)),在圖中畫(huà)出一條與線段垂直 的線段(或者直線),再畫(huà)出與線段平行的一條線段(或者 直線). 第二關(guān):在圖⑥的網(wǎng)格圖中,所給各點(diǎn)均為格點(diǎn),經(jīng)過(guò) 兩對(duì)給定的點(diǎn),構(gòu)造兩條互相垂直的直線.(在圖中直接畫(huà)出)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形邊長(zhǎng)為1的方格紙中,△ABC的頂點(diǎn)都在方格紙格點(diǎn)上.將△ABC向左平移2格,再向上平移4格.
(1)請(qǐng)?jiān)趫D中畫(huà)出平移后的△A′B′C′,
(2)再在圖中畫(huà)出△A′B′C′的高C′D′,并求出△ABC在整個(gè)平移過(guò)程中線段AC掃過(guò)的面積為________.
(3)能使S△MBC=S△ABC的格點(diǎn)M共有_______個(gè)(點(diǎn)M異于點(diǎn)A)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com