【題目】甲、乙兩家商場以同樣的價格出售同樣的電器,但各自推出的優(yōu)惠方案不同,甲商場規(guī)定:凡超過元的電器,超出的金額按收。灰疑虉鲆(guī)定:凡超過元的電器,超出的金額按收取,某顧客購買的電器價格是元.
(1)當時,分別用代數(shù)式表示在兩家商場購買電器所需付的費用
(2)當時,該顧客應(yīng)選擇哪一家商場購買比較合算?說明理由.
【答案】當x>1000時,甲商場需付款200+0.8x;乙商場需付款80+0.9x;(2)在甲商場購買比較合算.
【解析】
(1)當x>1000時:在甲商場的費用是:1000+超過1000元的部分×80%;在乙商場的費用是:800+超過800元的部分×90%
(2)計算出當x=1500時兩家商場的費用并比較即可.
(1)當x>1000時,甲商場需付款1000+80% (x-1000)=200+0.8x
乙商場需付款800+90% (x-800)=80+0.9x
(2)當x=1500時,甲商場需付款200+0.8x=200+0.8×1500=1400(元)
乙商場需付款80+0.9x=80+0.9×1500=1430(元)
因此,在甲商場購買比較合算.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點,⊙C的“完美點”的定義如下:若直線CP與⊙C交于點A,B,滿足|PA-PB|=2,則稱點P為⊙C的“完美點”,如圖為⊙C及其“完美點”P的示意圖.
(1)當⊙O的半徑為2時,
①點M(,0) ⊙O的“完美點”,點N(0,1) ⊙O的“完美點”,點T(-,- ) ⊙O的“完美點”(填“是”或者“不是”);
②若⊙O的“完美點”P在直線y=x上,求PO的長及點P的坐標;
(2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C的“完美點”,求圓心C的縱坐標t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 B 1, 0 , C 1, 0 , A 為 y 軸正半軸上一點, AB AC ,點 D 為第二象限一動點,E 在 BD 的延長線上, CD 交 AB 于 F ,且BDC BAC .
(1)求證: ABD ACD ;
(2)求證: AD 平分CDE ;
(3)若在 D 點運動的過程中,始終有 DC DA DB ,在此過程中,BAC 的度數(shù)是否變化?如果變化,請說明理由;如果不變,請求出BAC 的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中“里”是我國市制長度單位,1里=500米,則該沙田的面積為( )
A.750平方千米B.75平方千米C.15平方千米D.7.5平方千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB是一個直角,作射線OC,再分別作∠AOC和∠BOC的平分線OD,OE.
(1)如圖①,當∠BOC=40°時,求∠DOE的度數(shù);
(2)如圖②,當射線OC在∠AOB內(nèi)繞O點旋轉(zhuǎn)時,∠DOE的大小是否發(fā)生變化,說明理由;
(3)當射線OC在∠AOB外繞O點旋轉(zhuǎn)且∠AOC為鈍角時,畫出圖形,直接寫出∠DOE的度數(shù)(不必寫過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1.
(1)如圖1,在4×4的方格中,畫一個三角形,使它的三邊長分別是3,,,且頂點都在格點上;
(2)如圖2 , 直接寫出:①△ABC的周長為 ②△ABC的面積為 ;③AB邊上的高為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某路公交車從起點站出發(fā)依次經(jīng)過A、B、C站到達終點站,各站上、下乘客人數(shù)如下表所示(記上車人數(shù)為正,下車人數(shù)為負).
(1)表格中的值是 ;
(2)若此公交車采用一票制,即每位上車乘客無論哪站下車,車票都是2元,問該車這次出車共收入多少元?請列式計算.
(3)通過列式計算,公交車行駛在哪兩站之間時車上的乘客最多?最多乘客人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
考點:三角形綜合題.
【題型】填空題
【結(jié)束】
19
【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖l所示,給定線段MN及其垂直平分線上一點P。若以點P為圓心,PM為半徑的優(yōu)。ɑ虬雸A。㎝N上存在三個點可以作為一個等邊三角形的頂點,則稱點P為線段MN的“三足點”,特別的,若這樣的等邊三角形只存在一個,則稱點P為線段MN的“強三足點”。
問題:如圖2所示,平面直角坐標系xOy中,點A的坐標為(2,0),點B在射線y=x(x≥0)上。
(1)在點C(,0),D(,1),E(,-2)中,可以成為線段OA的“三足點”的是__________.
(2)若第一象限內(nèi)存在一點Q既是線段OA的“三足點”,又是線段OB的“強三足點”,求點B的坐標。
(3)在(2)的條件下,以點A為圓心,AB為半徑作圓,假設(shè)該圓與x軸交點中右側(cè)一個為H,圓上一動點K從H出發(fā),繞A順時針旋轉(zhuǎn)180°后停止,設(shè)點K出發(fā)后轉(zhuǎn)過的角度為(0°< ≤180°),若線段OB與AK不存在公共“三足點”,請直接寫出的取值范圍是_______________。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com