【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點(diǎn)F,使EF=AE,連接AF,CF,連接BE并延長交CF于點(diǎn)G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
考點(diǎn):三角形綜合題.
【題型】填空題
【結(jié)束】
19
【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△AB C沿DE,EF翻折,頂點(diǎn)A,B均落在點(diǎn)O處,且EA與EB重合于線段EO,若∠CDO+∠CFO=98°,則∠C的度數(shù)為( )
A. 40° B. 41° C. 42° D. 43°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家商場以同樣的價格出售同樣的電器,但各自推出的優(yōu)惠方案不同,甲商場規(guī)定:凡超過元的電器,超出的金額按收。灰疑虉鲆(guī)定:凡超過元的電器,超出的金額按收取,某顧客購買的電器價格是元.
(1)當(dāng)時,分別用代數(shù)式表示在兩家商場購買電器所需付的費(fèi)用
(2)當(dāng)時,該顧客應(yīng)選擇哪一家商場購買比較合算?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A,點(diǎn)A在第四象限,過點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H,點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點(diǎn)P,使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD,直線EF與AB、CD分別相交于點(diǎn)E、F.
(1)如圖1,若∠1=60°,求∠2、∠3的度數(shù);
(2)若點(diǎn)是平面內(nèi)的一個動點(diǎn),連結(jié)PE、PF,探索∠EPF、∠PEB、∠PFD三個角之間的關(guān)系:
①當(dāng)點(diǎn)P在圖2的位置時,可得∠EPF=∠PEB+∠PFD;請閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式).
解:如圖2,過點(diǎn)P作MN∥AB,
則∠EPM=∠PEB( 。
∵AB∥CD(已知),MN∥AB(作圖),
∴MN∥CD( 。
∴∠MPF=∠PFD( 。
∴ =∠PEB+∠PFD(等式的性質(zhì))
即∠EPF=∠PEB+∠PFD.
②當(dāng)點(diǎn)P在圖3的位置時,請直接寫出∠EPF、∠PEB、∠PFD三個角之間的關(guān)系: ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是一高為4米的平臺,AB是與CD底部相平的一棵樹,在平臺頂C點(diǎn)測得樹頂A點(diǎn)的仰角α=30°,從平臺底部向樹的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測得樹頂A點(diǎn)的仰角β=60°,求樹高AB(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把正方體(圖1)沿著某些棱邊剪開,就可以得到正方體的表面展開圖,如圖2.在圖1正方體中,每個面上都寫了一個含有字母x的整式,相對兩個面上的整式之和都等于4x﹣7,且A+D=0,(說明:A、B、C、D都表示含有字母x的整式)請回答下面問題:
(1)把圖1正方體沿著某些棱邊剪開得到它的表面展開圖2,要剪開 條棱邊;
(2)整式B+C= ;
(3)計算圖2中“D”和“?”所表示的整式(要寫出計算過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+m的圖象與反比例函數(shù)y=的圖象交于A,B兩點(diǎn),且與x軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(2,1).
(1)求m及k的值;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象寫出不等式組0<x+m≤的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對角線AC上,折痕為CE,且D點(diǎn)落在對角線D′處.若AB=3,AD=4,則ED的長為
A. B.3 C.1 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com