【題目】如圖,四邊形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中點(diǎn),AE與BD相交于點(diǎn)F,連接DE
(1)求證:△ABE≌△BCD;(2)若CD=1,試求△AED的面積.
【答案】(1)見解析;(2)1.5.
【解析】
(1)先根據(jù)已知條件和中點(diǎn)定義證出:BE=CD,然后根據(jù)平行線的性質(zhì)證出:∠ABE=∠C,最后利用SAS即可證出:△ABE≌△BCD;
(2)根據(jù)S△AED=S梯形ABCD-S△ABE-S△DCE計(jì)算即可.
證明:(1)∵AB=BC=2CD,E是BC的中點(diǎn),
∴BE=CE=BC,CD=BC,
∴BE=CD
∵AB∥CD,∠C=90°,
∴∠ABE=180°-∠C=90°,
∴∠ABE=∠C
在△ABE和△BCD中
∴△ABE≌△BCD;
解:(2)∵AB=BC=2CD,CD=1,
∴AB=BC=2,BE=CE=1
∴S△AED=S梯形ABCD-S△ABE-S△DCE
=BC·(AB+CD)-BE·AB-CE·DC
=×2×(2+1)-×1×2-×1×1
=1.5
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1,0),B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
(3)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線開口向上且經(jīng)過點(diǎn),雙曲線經(jīng)過點(diǎn),給出下列結(jié)論:;;,c是關(guān)于x的一元二次方程的兩個(gè)實(shí)數(shù)根;其中正確結(jié)論是______填寫序號(hào)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=ax2+c與x軸交于點(diǎn)A(m,0),B(n,0),與y軸交于點(diǎn)C(0,c),則稱△ABC為“拋物三角形”.特別地,當(dāng)mnc<0時(shí),稱△ABC為“正拋物三角形”;當(dāng)mnc>0時(shí),稱△ABC為“倒拋物三角形”.若△ABC為“倒拋物三角形”時(shí),a、c應(yīng)分別滿足條件_____、_____;若△ABC為“正拋物三角形”,此時(shí)△ABC及其關(guān)于x軸的軸對(duì)稱圖形恰好構(gòu)成了一個(gè)含60°角的菱形,則a、c應(yīng)滿足的關(guān)系為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,圖中“小魚”的各個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)把“小魚”向右平移5個(gè)單位長(zhǎng)度,并畫出平移后的圖形;
(2)寫出A、B、C三點(diǎn)平移后的對(duì)應(yīng)點(diǎn)A′、B′、C′的坐標(biāo);
(3)求出圖中“小魚”的面積,平移后圖中“小魚”的面積發(fā)生變化嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC,∠C=90°,AC=12,BC=6,一條線段PQ=AB,P、Q兩點(diǎn)分別在AC和過點(diǎn)A且垂直于AC的射線AX上運(yùn)動(dòng),要使△ABC和△QPA全等,則AP= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,.分別是線段,上的點(diǎn),連接,使四邊形為正方形,若點(diǎn)是上的動(dòng)點(diǎn),連接,將矩形沿折疊使得點(diǎn)落在正方形的對(duì)角線所在的直線上,對(duì)應(yīng)點(diǎn)為,則線段的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC、BD相交于點(diǎn)O,∠A=∠D,要使得△AOB≌△DOC,還需補(bǔ)充一個(gè)條件,下面補(bǔ)充的條件不一定正確的是( 。
A.OA=ODB.AB=DCC.OB=OCD.∠ABO=∠DCO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn),.
(1)若,滿足.
①直接寫出______,______.
②如圖1,為點(diǎn)上方一點(diǎn),連接,在軸右側(cè)作等腰,,連接并延長(zhǎng)交軸于點(diǎn),當(dāng)點(diǎn)上方運(yùn)動(dòng)時(shí),求的面積;
(2)如圖2,若,點(diǎn)在邊上,且,為上一點(diǎn),且,連接,過點(diǎn)作的垂線交于點(diǎn),交于點(diǎn).連接,當(dāng),求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com