【題目】某商店銷售一種商品,經(jīng)市場調(diào)查發(fā)現(xiàn),該商品的周銷售量(件)是售價(元/件)的一次函數(shù).其售價、周銷售量、周銷售利潤(元)的三組對應(yīng)值如下表:

售價(元/件)

50

60

80

周銷售量(件)

100

80

40

周銷售利潤(元)

1000

1600

1600

注:周銷售利潤=周銷售量×(售價-進價)

1)求關(guān)于的函數(shù)解析式(不寫出自變量的取值范圍);

2)該商品進價是 /件;求售價是多少元/件時,周銷售利潤最大,最大利潤是多少元?

3)由于某種原因,該商品進價提高了/件(),物價部門規(guī)定該商品售價不得超過65/件.該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中函數(shù)關(guān)系.若周銷售最大利潤是1400元,則的值為

【答案】1;(240;x=70時,最大利潤為1800元;(35

【解析】

(1)①依題意設(shè),利用待定系數(shù)法即可得到結(jié)論;
②該商品進價是50-1000÷100=40,根據(jù)題意,每周獲得利潤,利用二次函數(shù)最值即可得到結(jié)論;
(2)根據(jù)題意得,w=(x-40-m)(-2x+200)=-2x2+(280+2m)x-800-200m,由于對稱軸是x=,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

(1)①依題意設(shè),
則有,解得:,
所以y關(guān)于x的函數(shù)解析式為;
②該商品進價是(),

根據(jù)題意,每周獲得利潤

,
∴當(dāng)售價是70/件時,周銷售利潤最大,最大利潤是1800元;
故答案為:40,70,1800;
(2)根據(jù)題意得,,
∵對稱軸為:,

m0

∴由二次函數(shù)的性質(zhì),,開口向下,在對稱軸左側(cè),函數(shù)值隨x的增加而增加,

∵物價部門規(guī)定該商品售價不得超過65/件,

∴當(dāng)時,w取最大值為1400,


解得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABCRtACD中,AC=BC,∠ACB=90°,∠ADC=90°,CD=2,(A、B分別在直線CD的左右兩側(cè)),射線CD交邊AB于點E,點GRtABC的重心,射線CG交邊AB于點FAD=x,CE=y.

(1)求證:∠DAB=DCF.

(2)當(dāng)點E在邊CD上時,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

(3)如果△CDG是以CG為腰的等腰三角形,試求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖 1,若 P是口ABCD CD 上任意一點,連結(jié) AP、BP,若APB 的面積為 60 ,APD 的面積為 18,則 SAPC= .

(2) 如圖 2,①若點 P 運動到口ABCD 內(nèi)一點時,試說明 SAPB +SDPC =SBPC +SAPD.

②若此時APB 的面積為 60,APD 的面積為 18,則 SAPC= .

3)如圖 3①利用(2)中的方法你會發(fā)現(xiàn),SAPB ,SDPC ,SBPC ,SAPD 之間存在怎樣的關(guān)系: .

②若此時APB 的面積為 60,APD 的面積為 18,請利用你的發(fā)現(xiàn),求 SAPC 的面積?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為二次函數(shù)的圖象,在下列選項中錯誤的是(

A.

B. 時,的增大而增大

C.

D. 方程的根是,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的對稱軸為直線,與軸的一個交點坐標(biāo)為,其部分圖象如圖所示,有下列結(jié)論:①;②;③當(dāng)時,增大而增大;④拋物線的頂點坐標(biāo)為;⑤若方程兩根為),則,.其中正確結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形MNOK和正六邊形ABCDEF邊長均為1,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示:按下列步驟操作:將正方形在正六邊形中繞點B順時針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點C順時針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn)……連續(xù)經(jīng)過六次旋轉(zhuǎn).在旋轉(zhuǎn)的過程中,當(dāng)正方形和正六邊形的邊重合時,點B,M間的距離可能是(  )

A. 0.5B. 0.7C. 1D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使PD兩點落在直線AB的兩側(cè).

(1)如圖,當(dāng)∠APB=45°時,求ABPD的長;

(2)當(dāng)∠APB變化,且其它條件不變時,求PD的最大值,及相應(yīng)∠APB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC2,將△ABCAC的中點D逆時針旋轉(zhuǎn)90°得到△ABC′,其中點B的運動路徑為,則圖中陰影部分的面積為(  )

A.πB.2C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,三個頂點的坐標(biāo)分別為A2,3)、B1,1)、C5,1).

1)把平移后,其中點移到點,面出平移后得到的

2)把繞點按逆時針方向旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的,并求出旋轉(zhuǎn)過程中點經(jīng)過的路徑長(結(jié)果保留根號和).

查看答案和解析>>

同步練習(xí)冊答案