【題目】一次函數(shù)y=ax+b(a≠0)與二次函數(shù)y=ax2+bx+c(a≠0)在同一平面直角坐標(biāo)系中的圖象可能是( 。
A.
B.
C.
D.

【答案】C
【解析】解:A、由拋物線可知,a<0,由直線可知,故本選項錯誤;B、由拋物線可知,a>0,x=﹣ >0,得b<0,由直線可知,a>0,b>0,故本選項錯誤;C、由拋物線可知,a<0,x=﹣ <0,得b<0,由直線可知,a<0,b<0,故本選項正確;D、由拋物線可知,a<0,x=﹣ <0,得b<0,由直線可知,a<0,b>0故本選項錯誤.
故選C.
【考點精析】通過靈活運(yùn)用一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn);二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過D、A、C三點的圓的圓心為E,過B、E、F三點的圓的圓心為D,如果∠A=63°,那么∠B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為4,點E、F分別在邊AB、ABC上,且AE=BF=1,CE、DF相交于點O,下列結(jié)論: ①∠DOC=90°,②OC=OE,③tan∠OCD= ,④△COD的面積等于四邊形BEOF的面積中,正確的有 (

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=kx+b與拋物線y= x2交于A(x1 , y1)、B(x2 , y2)兩點,當(dāng)OA⊥OB時,直線AB恒過一個定點,該定點坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣ x2+ x+3與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,拋物線的頂點為點E.

(1)判斷△ABC的形狀,并說明理由;
(2)經(jīng)過B,C兩點的直線交拋物線的對稱軸于點D,點P為直線BC上方拋物線上的一動點,當(dāng)△PCD的面積最大時,Q從點P出發(fā),先沿適當(dāng)?shù)穆窂竭\(yùn)動到拋物線的對稱軸上點M處,再沿垂直于拋物線對稱軸的方向運(yùn)動到y(tǒng)軸上的點N處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動到點A處停止.當(dāng)點Q的運(yùn)動路徑最短時,求點N的坐標(biāo)及點Q經(jīng)過的最短路徑的長;
(3)如圖2,平移拋物線,使拋物線的頂點E在射線AE上移動,點E平移后的對應(yīng)點為點E′,點A的對應(yīng)點為點A′,將△AOC繞點O順時針旋轉(zhuǎn)至△A1OC1的位置,點A,C的對應(yīng)點分別為點A1 , C1 , 且點A1恰好落在AC上,連接C1A′,C1E′,△A′C1E′是否能為等腰三角形?若能,請求出所有符合條件的點E′的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2 , 交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進(jìn)行下去,直至得到C6 , 若點P(11,m)在第6段拋物線C6上,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過B(﹣2,6),C(2,2)兩點.

(1)試求拋物線的解析式;
(2)記拋物線頂點為D,求△BCD的面積;
(3)若直線y=﹣ x向上平移b個單位所得的直線與拋物線段BDC(包括端點B、C)部分有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (k>0)的圖象與BC邊交于點E.

(1)當(dāng)F為AB的中點時,求該函數(shù)的解析式;
(2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校準(zhǔn)備組織師生共60人,從南靖乘動車前往廈門參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學(xué)生按學(xué)生票價購買).

運(yùn)行區(qū)間

成人票價(元/張)

學(xué)生票價(元/張)

出發(fā)站

終點站

一等座

二等座

二等座

南靖

廈門

26

22

16

若師生均購買二等座票,則共需1020元.
(1)參加活動的教師有人,學(xué)生有人;
(2)由于部分教師需提早前往做準(zhǔn)備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學(xué)生均購買二等座票.設(shè)提早前往的教師有x人,購買一、二等座票全部費(fèi)用為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②若購買一、二等座票全部費(fèi)用不多于1032元,則提早前往的教師最多只能多少人?

查看答案和解析>>

同步練習(xí)冊答案