【題目】如圖,在平面直角坐標系xOy中,函數(shù)yx>0)的圖象經(jīng)過點A,作ACx軸于點C

(1)求k的值;

(2)直線yax+ba≠0)圖象經(jīng)過點Ax軸于點B,且OB=2AC.求a的值.

【答案】(1)k=4;(2)a的值為或﹣1.

【解析】

(1)∵圖形過A點,∴A點坐標符合函數(shù)關(guān)系式,代入求解即可.(2)B點可以在C點左邊,也可以在C點右邊,并通過待定系數(shù)法即可求解.

解:(1)∵函數(shù)yx>0)的圖象經(jīng)過點A(2,2),

k=2×2=4;

(2)∵OB=2AC,AC=2,

OB=4.

分兩種情況:

如果B(﹣4,0).

∵直線yax+ba≠0)圖象經(jīng)過點Ax軸于點B,2a+b=2,4a+b=0,求得a=,b=.

如果B(4,0).

∵直線yax+ba≠0)圖象經(jīng)過點Ax軸于點B,2a+b=2,4a+b=0,求得a=1,b=4.

綜上,所求a的值為或﹣1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2mx﹣m2+1的對稱軸是直線x=1.

(1)求拋物線的表達式;

(2)點D(n,y1),E(3,y2)在拋物線上,若y1y2,請直接寫出n的取值范圍;

(3)設(shè)點M(p,q)為拋物線上的一個動點,當﹣1p2時,點M關(guān)于y軸的對稱點都在直線y=kx﹣4的上方,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABO的直徑,BC=2cmABC=60°若動點P以2cm/s的速度從B點出發(fā)沿著B→A的方向運動,點Q以1cm/s的速度從A點出發(fā)沿著AC的方向運動,當點P到達點A時,點Q也隨之停止運動設(shè)運動時間為ts),APQ是直角三角形時,t的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標系xOy,ABC的三個頂點都在格點上,點A的坐標(4,4),請解答下列問題:

(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點A1、B1、C1的坐標;

(2)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點AA2的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內(nèi),y隨x的增大而減。虎谌酎cB的橫坐標為﹣3,則C點的坐標為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點PPCx軸于點C,交拋物線于點D

(1)

①求拋物線的解析式;

②當線段PD的長度最大時,求點P的坐標;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以BP、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.

(1)求甲選擇A部電影的概率;

(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的方格紙(每個小方格都是邊長為1個單位的正方形)中建立平面直角坐標系,△ABC的三個頂點都在格點上,點A的坐標為(24),請解答下列問題:

1)畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點B1的坐標;

2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2;

3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當PE=2PF時,AP=________.

查看答案和解析>>

同步練習(xí)冊答案