【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)交x軸于A,B(1,0)兩點,交y軸于點C,一次函數(shù)y=x+3的圖象交坐標(biāo)軸于A,D兩點,E為直線AD上一點,作EF⊥x軸,交拋物線于點F
(1)求拋物線的解析式;
(2)若點F位于直線AD的下方,請問線段EF是否有最大值?若有,求出最大值并求出點E的坐標(biāo);若沒有,請說明理由.
【答案】(1)y=x 2+x﹣1;(2)EF的長度有最大值,最大值為,此時點E的坐標(biāo)為(,).
【解析】
(1)求出點A的坐標(biāo),再根據(jù)待定系數(shù)法即可求出拋物線的解析式;
(2)設(shè)點E的坐標(biāo)為(m,m+3),則F(m,m 2+m﹣1),可得,即可求出EF的最大值并求出點E的坐標(biāo).
(1)將y=0代入y=x+3,得x=﹣3.
∴A(﹣3,0).
∵拋物線y=ax2+bx﹣1交x軸于A(﹣3,0),B(1,0)兩點,
∴,解得:
拋物線的解析式為y=x 2+x﹣1;
(2)設(shè)點E的坐標(biāo)為(m,m+3),則F(m,m 2+m﹣1)
∴EF=(m+3)﹣( m 2+m﹣1)
=(m﹣) 2+,
∴當(dāng)m=時,EF的長度有最大值,最大值為,此時點E的坐標(biāo)為(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,BE=2DE,過點C作CF∥BE交DE的延長線于F,連接CD.
(1)求證:四邊形BCFE是菱形;
(2)在不添加任何輔助線和字母的情況下,請直接寫出圖中與△BEC面積相等的所有三角形(不包括△BEC).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形 ABCD 中,AD=6,點 E 是對角線 AC 上一點,連接 DE,過點 E 作 EF⊥ ED,交 AB 于點 F,連接 DF,交 AC 于點 G,將△EFG 沿 EF 翻折,得到△EFM,連接DM,交 EF 于點 N,若點 F 是 AB 邊的中點,則 △EDM 的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點,A點的坐標(biāo)為,B點的坐標(biāo)為,連接,過B作軸,垂足為C.
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)在射線上是否存在一點D,使得是直角三角形,求出所有可能的D點坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不動,△ADE繞點A旋轉(zhuǎn),連接BE,CD,F(xiàn)為BE的中點,連接AF.
(1)如圖①,當(dāng)∠BAE=90°時,求證:CD=2AF;
(2)當(dāng)∠BAE≠90°時,(1)的結(jié)論是否成立?請結(jié)合圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點F為OB中點.
(1)求直線BC的函數(shù)表達式;
(2)若點D為拋物線第四象限上的一個動點,連接BD,CD,點E為x軸上一動點,當(dāng)△BCD的面積的最大時,求點D的坐標(biāo),及|FE﹣DE|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.
(1)求拋物線的解析式并寫出其頂點坐標(biāo);
(2)當(dāng)點P的縱坐標(biāo)為2時,求點P的橫坐標(biāo);
(3)當(dāng)點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的面積是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com