【題目】往一個長25m,寬11m的長方體游泳池注水,水位每小時上升0.32m,

1)寫出游泳池水深d(m)與注水時間x(h)的函數(shù)表達式;

2)如果x(h)共注水y(m3),求yx的函數(shù)表達式;

3)如果水深1.6m時即可開放使用,那么需往游泳池注水幾小時?注水多少(單位:m3)?

【答案】(1)d=0.32x;(2y=0.88x;(3)需往游泳池注水5小時;注水440m3

【解析】

試題

(1)根據(jù)題意知:利用水位每小時上升0.32m,得出水深d(m)與注水時間x(h)之間的函數(shù)關(guān)系式;

(2)首先求出游泳池每小時進水的體積,再求yx的函數(shù)表達式即可;
(3)利用(1)中所求,結(jié)合水深不低于1.6m得出不等式求出即可.

【解答】解:(1)d=0.32x;
(2)

y=88x

(3)設(shè)向游泳池注水x小時,由題意得:
0.32x≥1.6,
解得:x≥5,

y=88x=88x=440m3.

答:向游泳池至少注水4小時后才可以使用.注水440m3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A是以BC為直徑的圓上的一點,BE是⊙O的切線,CA的延長線與BE交于E點,F(xiàn)是BE的中點,延長AF,CB交于點P.

(1)求證:PA是⊙O的切線;
(2)若AF=3,BC=8,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市美化工程招標(biāo)時,有甲、乙兩個工程隊投標(biāo).經(jīng)測算:甲隊單獨完成這項工程需要60天;若由甲隊先做20天,剩下的工程由甲、乙合做24天可完成.

(1)乙隊單獨完成這項工程需要多少天?

(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內(nèi)完成,在不超過計劃天數(shù)的前提下,是由甲隊或乙隊單獨完成該工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1有兩條長度相等的相交線段AB、CD,它們相交的銳角中有一個角為60°,為了探究AD、CBCD(或AB)之間的關(guān)系,小亮進行了如下嘗試:

(1)在其他條件不變的情況下使得ADBC,如圖2,將線段AB沿AD方向平移AD的長度,得到線段DE,然后聯(lián)結(jié)BE,進而利用所學(xué)知識得到AD、CBCD(或AB)之間的關(guān)系:   ;(直接寫出結(jié)果)

(2)根據(jù)小亮的經(jīng)驗,請對圖1的情況(ADCB不平行)進行嘗試,寫出AD、CBCD(或AB)之間的關(guān)系,并進行證明;

(3)綜合(1)、(2)的證明結(jié)果,請寫出完整的結(jié)論:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一艘輪船位于燈塔P南偏西60°方向的A處,它向東航行20海里到達燈塔P南偏西45°方向上的B處,若輪船繼續(xù)沿正東方向航行,求輪船航行途中與燈塔P的最短距離.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是張亮、李娜兩位同學(xué)零花錢全學(xué)期各項支出的統(tǒng)計圖.根據(jù)統(tǒng)計圖,下列對兩位同學(xué)購買書籍支出占全學(xué)期總支出的百分比作出的判斷中,正確的是(

A. 張亮的百分比比李娜的百分比大 B. 張娜的百分比比張亮的百分比大

C. 張亮的百分比與李娜的百分比一樣大 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋里裝有16個只有顏色不同的球,其中紅球有x個,白球有2x個,其他均為黃球,現(xiàn)甲從布袋中隨機摸出一個球,若是紅球則甲同學(xué)獲勝,甲同學(xué)把摸出的球放回并攪勻,由乙同學(xué)隨機摸出一個球,若為黃球,則乙同學(xué)獲勝。

(1)當(dāng)X=3時,誰獲勝的可能性大?

(2)當(dāng)x為何值時,游戲?qū)﹄p方是公平的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD 中,點P在對角線AC上,過PEFABHGAD,記四邊形BFPH的面積為S1,四邊形DEPG的面積為S2,則S1S2的大小關(guān)系是

A. S1>S2 B. S1=S2 C. S1<S2 D. 無法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB∥CD,直線l與直線AB、CD相交于點,E、F,將l繞點E逆時針旋轉(zhuǎn)40°后,與直線AB相交于點G,若∠GEC=70°,那么∠GFE=度.

查看答案和解析>>

同步練習(xí)冊答案