【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在A地時距地面的高度b為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式;
(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?
【答案】(1)10;30;(2)y=;(3)3分鐘、10分鐘或13分鐘.
【解析】
(1)根據(jù)速度=高度÷時間即可算出甲登山上升的速度;根據(jù)高度=速度×時間即可算出乙在A地時距地面的高度b的值;
(2)分0≤x≤2和x≥2兩種情況,根據(jù)高度=初始高度+速度×時間即可得出y關(guān)于x的函數(shù)關(guān)系;
(3)找出甲登山全程中y關(guān)于x的函數(shù)關(guān)系式,令二者做差等于50即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論.
解:(1)(300-100)÷20=10(米/分鐘),
b=15÷1×2=30.
故答案為:10;30.
(2)當(dāng)0≤x≤2時,y=15x;
當(dāng)x≥2時,y=30+10×3(x-2)=30x-30.
當(dāng)y=30x-30=300時,x=11.
∴乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y= .
(3)甲登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關(guān)系式為y=10x+100(0≤x≤20).
當(dāng)10x+100-15x=70時,解得:x=6(舍去);
當(dāng)10x+100-(30x-30)=70時,解得:x=3;
當(dāng)30x-30-(10x+100)=70時,解得:x=10;
當(dāng)300-(10x+100)=70時,解得:x=13.
答:登山3分鐘、10分鐘或13分鐘時,甲、乙兩人距地面的高度差為70米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面給出的正多邊形的邊長都是20cm,請分別按下列要求設(shè)計一種剪拼方法(用虛線表示你的設(shè)計方案,把剪拼線段用粗黑實線,在圖中標(biāo)注出必要的符號和數(shù)據(jù),并作簡要說明.
(1)將圖1中的正方形紙片剪拼成一個底面是正方形的直四棱柱模型,使它的表面積與原正方形面積相等;
(2)將圖2中的正三角形紙片剪拼成一個底面是正三角形的直三棱柱模型,使它的表面積與原正三角形的面積相等;
(3)將圖3中的正五邊形紙片剪拼成一個底面是正五邊形的直五棱柱模型,使它的表面積與原正五邊形的面積相等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC>AC , 點D在BC上,且DC=AC , ∠ACB的平分線CF交AD于F , 點E是AB的中點,連接EF .
(1)求證:2EF=BD ,
(2)四邊形BDFE的面積為6,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校課外生物小組的試驗園地是長35米、寬20米的矩形,為便于管理,現(xiàn)要在中間開辟一橫兩縱三條等寬的小道(如圖),要使種植面積為600平方米,求小道的寬.若設(shè)小道的寬為x米,則可列方程為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠工人小王某月工作的部分信息如下:
信息一:工作時間:每天上午8:00~12:00,下午14:00~18:00,每月25天;
信息二:生產(chǎn)甲、乙兩種產(chǎn)品,并且按規(guī)定每月生產(chǎn)甲產(chǎn)品的件數(shù)不少于45件.
生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系見下表:
生產(chǎn)甲產(chǎn)品件數(shù)(件) | 生產(chǎn)乙產(chǎn)品件數(shù)(件) | 所用總時間(分) |
10 | 10 | 500 |
15 | 20 | 900 |
信息三:按件計酬,每生產(chǎn)一件甲產(chǎn)品可得6元,每生產(chǎn)一件乙產(chǎn)品可得10元.
根據(jù)以上信息,回答下列問題:
(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分?
(2)小王該月最多能得多少元?此時生產(chǎn)甲、乙兩種產(chǎn)品分別多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組管道如圖1所示,其中四邊形ABCD是矩形,O是AC的中點,管道由AB,BC,CD,DA,OA,OB,OC,OD組成,在BC的中點M 處放置了一臺定位儀器.一個機器人在管道內(nèi)勻速行進,對管道進行檢測.設(shè)機器人行進的時間為x,機器人與定位儀器之間的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則機器人的行進路線可能為( )
A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(1,0),P是第一象限內(nèi)任意一點,連接PO,PA,若∠POA=m°,∠PAO=n°,則我們把(m°,n°)叫做點P 的“雙角坐標(biāo)”.例如,點(1,1)的“雙角坐標(biāo)”為(45°,90°).
(1)點( , )的“雙角坐標(biāo)”為;
(2)若點P到x軸的距離為 ,則m+n的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究函數(shù)y=x+ 的圖象與性質(zhì)
(1)函數(shù)y=x+ 的自變量x的取值范圍是;
(2)下列四個函數(shù)圖象中,函數(shù)y=x+ 的圖象大致是
(3)對于函數(shù)y=x+ ,求當(dāng)x>0時,y的取值范圍.
請將下面求解此問題的過程補充完整:
解:∵x>0
∴y=x+
=( )2+( )2
=( ﹣ )2+
∵( ﹣ )2≥0,
∴y .
(4)若函數(shù)y= ,則y的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽影子定位技術(shù)是通過分析視頻中物體的太陽影子變化,確定視頻拍攝地點的一種方法.為了確定視頻拍攝地的經(jīng)度,我們需要對比視頻中影子最短的時刻與同一天東經(jīng)120度影子最短的時刻.在一定條件下,直桿的太陽影子長度l(單位:米)與時刻t(單位:時)的關(guān)系滿足函數(shù)關(guān)系l=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三個時刻的數(shù)據(jù),根據(jù)上述函數(shù)模型和記錄的數(shù)據(jù),則該地影子最短時,最接近的時刻t是( )
A.12.75
B.13
C.13.33
D.13.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com