【題目】學校課外生物小組的試驗園地是長35米、寬20米的矩形,為便于管理,現(xiàn)要在中間開辟一橫兩縱三條等寬的小道(如圖),要使種植面積為600平方米,求小道的寬.若設小道的寬為x米,則可列方程為

【答案】(35-2x)(20-x)=600(或2x2-75x+100=0)
【解析】把陰影部分分別移到矩形的上邊和左邊可得矩形的長為(35-2x)米,寬為(20-x)米, ∴可列方程為(35-2x)(20-x)=600(或2x2-75x+100=0).
故答案為:(35-2x)(20-x)=600(或2x2-75x+100=0).
把陰影部分分別移到矩形的上邊和左邊,可得種植面積為一個矩形,根據(jù)種植的面積為600列出方程.利用平移的知識得到種植面積的形狀是解決此題的關鍵;得到種植面積的長與寬是解決此題的易錯點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于(
A.3:4
B. :2
C. :2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,ECD上一點,連接AEBD , 且AEBD交于點F , DEEC=2:3,則SDEFSABF=( 。
A.2:3
B.4:9
C.2:5
D.4:25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC的三邊長分別為6cm , 7.5cm , 9cm , △DEF的一邊長為4cm , 當△DEF的另兩邊長是下列哪一組時,這兩個三角形相似( 。
A.2 cm,3 cm
B.4 cm,5 cm
C.5 cm,6 cm
D.6 cm,7 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是直角△ABC (∠C=90°)的角平分線,EFADD , 與ABAC的延長線分別交于E , F , 寫出圖中的一對全等三角形是 ;一對相似三角形是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程3x2-4x=2的根是(   。
A.x1=-2,x2=1
B.x1= ,x2=
C.x1= ,x2=
D.x1= ,x2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度y(米)與登山時間x(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:

(1)甲登山上升的速度是每分鐘   米,乙在A地時距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請求出乙登山全程中,距地面的高度y(米)與登山時間x(分)之間的函數(shù)關系式;

(3)登山多長時間時,甲、乙兩人距地面的高度差為70米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點E在CB的延長線上,連接AC,AE,∠ACB=∠BAE=45°

(1)求證:AE是⊙O的切線;
(2)若 AB=AD,AC=2 ,tan∠ADC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD,E為平面內(nèi)任意一點,連結DE,將線段DE繞點D順時針旋轉90°得到DG,連結EC,AG.

(1)當點E在正方形ABCD內(nèi)部時,
①依題意補全圖形;
②判斷AG與CE的數(shù)量關系與位置關系并寫出證明思路.
(2)當點B,D,G在一條直線時,若AD=4,DG= ,求CE的長.

查看答案和解析>>

同步練習冊答案