【題目】如圖所示,在平行四邊形ABCD中,∠A=90°,AB=6cm,BC=12cm,點(diǎn)E由點(diǎn)A出發(fā)沿AB方向向點(diǎn)B勻速移動(dòng),速度為1cm/s,點(diǎn)F由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速移動(dòng),速度為2cm/s,如果動(dòng)點(diǎn)E、F同時(shí)從A、B兩點(diǎn)出發(fā),連接EF,若設(shè)運(yùn)動(dòng)時(shí)間為ts,解答下列問(wèn)題.
(1)當(dāng)t為 時(shí),△BEF為等腰直角三角形;
(2)當(dāng)t為 時(shí),△DFC為等腰直角三角形;
(3)是否存在某一時(shí)刻,使△EFB∽△FDC?若存在,求出t的值,若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)2s;(2)3s;(3)當(dāng)t=1.5時(shí),△EFB∽△FDC.
【解析】
試題分析:(1)由已知條件易證四邊形ABCD是矩形,所以∠A=∠B=∠C=90°,若△BEF為等腰直角三角形,則BE=BF,進(jìn)而可求出t的值;
(2)由(1)可知∠C=90°,若△DFC為等腰直角三角形,則CF=DC,進(jìn)而可求出t的值;
(3)若△EFB∽△FDC,則BE:CF=BF:DC,結(jié)合題目的已知條件可得到關(guān)于t的方程,解方程即可得知是否存在t的值.
解:
(1)∵在平行四邊形ABCD中,∠A=90°,
∴四邊形ABCD是矩形,
∴∠A=∠B=∠C=90°,
∴若△BEF為等腰直角三角形,則BE=BF,
∵點(diǎn)E由點(diǎn)A出發(fā)沿AB方向向點(diǎn)B勻速移動(dòng),速度為1cm/s,點(diǎn)F由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速移動(dòng),速度為2cm/s,AB=6cm,BC=12cm,
∴BE=(6﹣t)cm,BF=2t,
∴6﹣t=2t,
∴t=2s,
故答案為2s;
(2)由(1)可知若△DFC為等腰直角三角形,則CF=DC,
∵CF=2tcm,DC=6cm,
∴2t=6,
∴t=3s,
故答案為3s;
(3)存在某一時(shí)刻,使△EFB∽△FDC,
∵△EFB∽△FDC,
∴BE:CF=BF:DC,
∴,
整理得:2t2﹣15t+18=0,
即(2t﹣3)(t﹣6)=0,
解得:t=1.5或t=6(舍),
∴當(dāng)t=1.5時(shí),△EFB∽△FDC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△A1B1C1;作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△AB2C2;
(2)點(diǎn)B1的坐標(biāo)為_________,
點(diǎn)C2的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)正數(shù)的兩個(gè)平方根分別是3a+2和a+14,則這個(gè)正數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x與雙曲線y=在第一象限的交點(diǎn)為A,過(guò)點(diǎn)A作AB⊥x軸于B,將△ABO繞點(diǎn)O旋轉(zhuǎn)90°,得到△A′B′O,則點(diǎn)A′的坐標(biāo)為( )
A.(1,0)
B.(1,0)或(﹣1,0)
C.(2,0)或(0,﹣2)
D.(﹣2,1)或(2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程kx2+2x﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是( )
A.k>﹣1
B.k<﹣1
C.k≥﹣1且k≠0
D.k>﹣1且k≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式不能用平方差公式計(jì)算的是( )
A. (a+b)(a-b) B. (-a+b)(-a-b) C. (-a+b)(a-b) D. (a+b)( -a + b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要使平行四邊形ABCD成為菱形,需添加的一個(gè)條件是( )
A.AB=BC
B.AC=BD
C.∠ABC=90°
D.AC與BD互相平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的布袋里裝有3個(gè)小球,其中2個(gè)紅球,1個(gè)白球,它們除顏色外其余都相同.
(1)求摸出1個(gè)小球是白球的概率;
(2)摸出1個(gè)小球,記下顏色后放回,并攪均,再摸出1個(gè)小球.求兩次摸出的小球恰好顏色不同的概率.(要求畫(huà)樹(shù)狀圖或列表)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A ( 5, 3 ) 的坐標(biāo)變?yōu)?( 3 , -1),則點(diǎn)A經(jīng)歷了怎樣的圖形變化 ( )
A .先向左平移2個(gè)單位長(zhǎng)度,再向下平移4個(gè)單位長(zhǎng)度
B. 先向左平移2個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度
C. 先向右平移2個(gè)單位長(zhǎng)度,再向上平移4個(gè)單位長(zhǎng)度
D. 先向右平移2個(gè)單位長(zhǎng)度,再向下平移4個(gè)單位長(zhǎng)度
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com