【題目】已知,如圖,在RtABC中,∠ACB=90°,AC=4BC=2點(diǎn),DAC中點(diǎn),將△ABD沿BD所在直線折疊,使點(diǎn)A落在點(diǎn)P處,連接PC
1)寫出BP,BD的長;
2)求證:四邊形BCPD是平行四邊形.

【答案】1BD=,BP= 2;(2)見解析

【解析】

1)分別在RtABCRtBDC中,求出AB、BD即可解決問題;
2)想辦法證明DPBC,DP=BC即可.

1)①在RtABC中,∵BC=2,AC=4
AB==2,
AD=CD=2,
BD=
由翻折可知,BP=BA=2;
2)∵△BCD是等腰直角三角形,
∴∠BDC=45°,
∴∠ADB=BDP=135°,
∴∠PDC=135°-45°=90°
∴∠BCD=PDC=90°
DPBC,∵PD=AD=BC=2,
∴四邊形BCPD是平行四邊形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD的兩邊長分別為m+13m+3(其中為m正整數(shù)),且正方形EFGH的周長與長方形ABCD的周長相等.

(Ⅰ)求正方形EFGH的邊長(用含有m的代數(shù)式表示);

(Ⅱ)長方形ABCD的面積記為S1,正方形EFGH的面積記為S2,請比較S1S2的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校教育將立德樹人置于首位,某校在開展以社會(huì)主義核心價(jià)值觀為主題的征文活動(dòng)中,(一)班計(jì)劃從2愛國2誠信為主題的征文中隨機(jī)選取2份進(jìn)行交流,利用樹狀圖或表格計(jì)算,在所選取的2份征文中,愛國為主題的征文同時(shí)被抽中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對(duì)應(yīng)值如下表:

小聰觀察上表,得出下面結(jié)論:拋物線與軸的一個(gè)交點(diǎn)為;函數(shù)的最大值為;③拋物線的對(duì)稱軸是;④在對(duì)稱軸左側(cè),增大而增大.其中正確有(

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線和直線.我們約定:當(dāng)任取一值時(shí),對(duì)應(yīng)的函數(shù)值分別為、,若,取、中的較大值記為;若,記.下列判斷:

①當(dāng)時(shí),;②當(dāng)時(shí),值越大,值越大;

③使得值不存在;④使值有個(gè).

其中正確的是________.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF∽六邊形GHIJKL,相似比為21,則下列結(jié)論正確的是( )

A. ∠E=2∠K B. BC=2HI C. 六邊形ABCDEF的周長=六邊形GHIJKL的周長 D. S六邊形ABCDEF=2S六邊形GHIJKL

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,DBC中點(diǎn),ADBCEBC上除B,D,C外任意一點(diǎn),根據(jù)“SAS”,可證明,所以ABAC,∠B=∠C.在ABEACE中,,不能證明,因?yàn)檫@是“SSA”的情形,是鈍角三角形,是銳角三角形,它們不可能全等.如果兩個(gè)三角形都是直角三角形,“SSA”就變成“HL”,就可以用來證明兩個(gè)三角形全等.同樣,如果我們知道兩個(gè)三角形都是鈍角三角形或銳角三角形,并且它們滿足“SSA”的情形,也是一定能全等的,但必須通過構(gòu)造直角三角形來間接證明.

問題:已知,如圖2,ADAC,

1)根據(jù)現(xiàn)有條件直接證明,可以嗎?為什么?

2)求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x22m+1x+mm+1=0,

(1)求證:方程總有兩個(gè)不相等的實(shí)數(shù)根;

(2)設(shè)方程的兩根分別為x1、x2,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于點(diǎn)F.若∠1=∠2=∠3,AC=AE,求證△ABC≌△ADE.

查看答案和解析>>

同步練習(xí)冊答案