【題目】已知⊙O的半徑為10cm,弦MNEF,MN=12cm,EF=16cm,則弦MNEF之間的距離為 ( )cm.

A.142B.14C.2D.6

【答案】A

【解析】

分兩種情況進行討論:①弦MNEF在圓心同側(cè);②弦MNEF在圓心異側(cè);作出半徑和弦心距,利用勾股定理和垂徑定理求解即可.

解:①當弦MNEF在圓心同側(cè)時,如圖1

MN=12cm,EF=16cm,

CE=8cm,CF=6cm,

OE=OM=10cm

CO=6cm,OD=8cm

EF=OF-OE=2cm;

②當弦MNEF在圓心異側(cè)時,如圖2,

MN=12cmEF=16cm,

CE=8cmCF=6cm,

OE=OM=10cm

CO=6cm,OD=8cm

EF=OF+OE=14cm;

故選擇:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為2的正方形ABCD中,點P、Q分別是邊AB、BC上的兩個動點(與點A、B、C不重合),且始終保持BP=BQ,AQ⊥QE,QE交正方形外角平分線CE于點E,AE交CD于點F,連結(jié)PQ.

(1)求證:△APQ≌△QCE;

(2)求∠QAE的度數(shù);

(3)設(shè)BQ=x,當x為何值時,QF∥CE,并求出此時△AQF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,,并且滿足.一動點從點出發(fā),在線段上以每秒個單位長度的速度向點移動;動點從點出發(fā)在線段上以每秒個單位長度的速度向點運動,點分別從點同時出發(fā),當點運動到點時,點隨之停止運動.設(shè)運動時間為()

(1)兩點的坐標;

(2)為何值時,四邊形是平行四邊形?并求出此時兩點的坐標.

(3)為何值時,是以為腰的等腰三角形?并求出此時兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點的中點,,的延長線與交于點,且.

1)求證相切;

2)若,求弦的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點G在正方形ABCD的對角線AC上,GEBC,垂足為點E,GFCD,垂足為點F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點C順時針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運用:

正方形CEGF在旋轉(zhuǎn)過程中,當B,E,F(xiàn)三點在一條直線上時,如圖(3)所示,延長CGAD于點H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一面墻(EF最長可利用28),圍成一個矩形花園ABCD.與墻平行的一邊BC上要預(yù)留2米寬的入口(如圖中MN所示,不用砌墻)60米長的墻的材料,當矩形的長BC為多少米時,矩形花園的面積為300平方米;能否圍成480平方米的矩形花園?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數(shù)y=的圖象上.若點B在反比例函數(shù)y=的圖象上,則k的值為(

A.-4 B.4 C.-2 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2經(jīng)過點A2,1).

1 a的值;

2 如圖1,點Mx軸負半軸上一點,線段AM交拋物線于N.若OMN為等腰三角形,求點N的坐標;

3 如圖2,直線y=kx2k3交拋物線于B、C兩點,過點CCPx軸,交直線AB于點P,請說明點P一定在某條確定的直線上運動,求出這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:內(nèi)接于⊙O,過點作直線EF,AB為非直徑的弦,且。

1)求證:是⊙O的切線

2)若,聯(lián)結(jié)并延長交于點,求由弧、線段 和所圍成的圖形的面積

查看答案和解析>>

同步練習(xí)冊答案