【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請?zhí)砑右粋條件使矩形ABCD為正方形.
【答案】(1)證明見解析;(2)AB=AD(或AC⊥BD答案不唯一).
【解析】試題分析:(1)根據(jù)平行四邊形對角線互相平分可得OA=OC,OB=OD,根據(jù)等角對等邊可得OB=OC,然后求出AC=BD,再根據(jù)對角線相等的平行四邊形是矩形證明;
(2)根據(jù)正方形的判定方法添加即可.
試題解析:解:(1)∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵∠OBC=∠OCB,∴OB=OC,∴AC=BD,∴平行四邊形ABCD是矩形;
(2)AB=AD(或AC⊥BD答案不唯一).
理由:∵四邊形ABCD是矩形,又∵AB=AD,∴四邊形ABCD是正方形.
或:∵四邊形ABCD是矩形,又∵AC⊥BD,∴四邊形ABCD是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中(AD>AB),點E是BC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結論中,不一定正確的是( 。
A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年5月23日起,我市將對行人闖紅燈分三檔進行處罰,九年級數(shù)學研究學習小組在某十字路口隨機調(diào)查部分市民對該法歸的了解情況,統(tǒng)計結果后繪制了如圖的三副不完整的統(tǒng)計圖,請結合圖中相關數(shù)據(jù)回答下列問題.
得分 | |
A | 50<n≤60 |
B | 60<n≤70 |
C | 70<n≤80 |
D | 80<n≤90 |
E | 90<n≤100 |
(1)本次共調(diào)查的人數(shù)為;
(2)補全頻數(shù)分布圖;
(3)在扇形統(tǒng)計圖中,“B”所在的扇形的圓心角的度數(shù)為;
(4)若在這一周里,該路口共有2000人通過,則可估計得分在80以上的人數(shù)大約為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應建在離A站多少千米處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AC是對角線,今有較大的直角三角板,一邊始終經(jīng)過點B,直角頂點P在射線AC上移動,另一邊交DC于點Q.
(1)如圖①,當點Q在DC邊上時,猜想并寫出PB與PQ所滿足的數(shù)量關系,并加以證明;
(2)如圖②,當點Q落在DC的延長線上時,猜想并寫出PB與PQ滿足的數(shù)量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)軸上點A對應的有理數(shù)為20,點P以每秒2個單位長度的速度從點A出發(fā),點Q以每秒4個單位長度的速度從原點O出發(fā),且P,Q兩點同時向數(shù)軸正方向運動,設運動時間為t秒.
(1)當t=2時,P,Q兩點對應的有理數(shù)分別是____,____,PQ=____;
(2)當PQ=10時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在5×8的網(wǎng)格中,每個小正方形的邊長均為1,線段AB的頂點均在小正方形的頂點上.
(1)畫出等腰直角△ABC,點C在格點上;
(2)畫出有一個銳角的正切值是2的直角△ABD,點D在格點上;
(3)在(1)(2)的條件下,連接CD,請直接寫出△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點C作CF平行于BA交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
(3)若AD=3,AE=5,則菱形AECF的面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com