【題目】如圖,EF∥AD,∠1=∠2,∠B=35°,將求∠BDG的過程填寫完整。
解: ∵EF∥AD,
∴∠2=____ (________________________________)
又∵∠1=∠2
∴∠1= ( 等量代換 )
∴DG∥_____ (___________________________________)
∴∠B+______=180°(___________________________)
∵∠B=35°
∴∠BDG =_______
【答案】答案見解析.
【解析】分析:先根據(jù)兩直線平行同位角相等可得∠2=∠3,然后根據(jù)等量代換可得∠1=∠3,然后根據(jù)內(nèi)錯角相等兩直線平行可得AB∥DG,然后根據(jù)兩直線平行同旁內(nèi)角互補(bǔ)可得∠B+∠BDG=180°,進(jìn)而可求∠BDG的度數(shù).
本題解析:∵EF∥AD,
∴∠2=_∠3 (兩直線平行,同位角相等)
又∵∠1=∠2(已知),∴∠1=∠3 (等量代換)
∴ DG∥BA (內(nèi)錯角相等,兩直線平行)
∴∠B+∠BDG =180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∵∠B=35°∴∠BDG =145°
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中一小島有一個觀測點(diǎn)A,某天上午觀測到某漁船在觀測點(diǎn)A的西南方向上的B處跟蹤魚群由南向北勻速航行.B處距離觀測點(diǎn)30海里,若該漁船的速度為每小時30海里,問該漁船多長時間到達(dá)觀測點(diǎn)A的北偏西60°方向上的C處?(計算結(jié)果用根號表示,不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,四邊形ABCD四個頂點(diǎn)的坐標(biāo)分別為A(-2,0),B(-1,2),C(3,3),D(4, 0).
(1)畫出四邊形ABCD;
(2)把四邊形ABCD向下平移4個單位長度,再向左平移2個單位長度得到四邊形A′B′C′D′,畫出四邊形A′B′C′D′,并寫出C′的坐標(biāo)。
(3)求出四邊形ABCD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一元二次方程x2﹣2x﹣3=0配方后所得的方程是( 。
A. (x﹣2)2=4 B. (x﹣1)2=4 C. (x﹣1)2=3 D. (x﹣2)2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB和拋物線交于點(diǎn)A(-4,0),B(0,4),且點(diǎn)B是拋物線的頂點(diǎn).
(1)求直線AB和拋物線的解析式.
(2)點(diǎn)P是直線上方拋物線上的一點(diǎn),求當(dāng)△PAB面積最大時點(diǎn)P的坐標(biāo).
(3)M是直線AB上一動點(diǎn),在平面直角坐標(biāo)系內(nèi)是否存在點(diǎn)N,使以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com