【題目】如圖1,點O在線段AB上,AO=2,OB=1,OC為射線,且∠BOC=60,動點P以每秒2個單位長度的速度從點O出發(fā),沿射線OC做勻速運(yùn)動,設(shè)運(yùn)動時間為t秒.
(1)當(dāng)t= 時,則OP= ,S△ABP= ;
(2)當(dāng)△ABP是直角三角形時,求t的值;
(3)如圖2,當(dāng)AP=AB時,過點A作AQ∥BP,并使得∠QOP=∠B,求證:AQ·BP=3.
【答案】(1)1, ;(2)1或;(3)證明見解析.
【解析】試題分析:(1)如答圖1所示,作輔助線,利用三角函數(shù)或勾股定理求解;
(2)當(dāng)△ABP是直角三角形時,有三種情形,需要分類討論;
(3)如答圖4所示,作輔助線,構(gòu)造一對相似三角形△OAQ∽△PBO,利用相似關(guān)系證明結(jié)論.
試題解析:(1)1,
(2)①∵∠A<∠BOC=60,∴∠A不可能是直角
②當(dāng)∠ABP=90時
∵∠BOC=60,∴∠OPB=30
∴OP=2OB,即2t=2
∴t=1
③當(dāng)∠APB=90時
作PD⊥AB,垂足為D,則∠ADP=∠PDB=90
∵OP=2t,∴OD=t,PD=t,AD=2+t,BD=1-t(△BOP是銳角三角形)
∴AP 2=( 2+t )2+3t 2,BP 2=( 1-t )2+3t 2
∵AP 2+BP 2=AB 2,∴( 2+t )2+3t 2+( 1-t )2+3t 2=9
即4t 2+t-2=0,解得t1
解得t1=,t2=(舍去)
綜上,當(dāng)△ABP是直角三角形時,t=1或
(3)
連接PQ,設(shè)AP與OQ相交于點E
∵AQ∥BP,∴∠QAP=∠APB
∵AP=AB,∴∠APB=∠B
∴∠QAP=∠B
又∵∠QOP=∠B,∴∠QAP=∠QOP
∵∠QEA=∠PEO,∴△QEA∽△PEO
∴
又∵∠PEQ=∠OEA,∴△PEQ∽△OEA
∴∠APQ=∠AOQ
∵∠AOC=∠AOQ+∠QOP=∠B+∠BPO
∴∠AOQ=∠BPO,
∴∠APQ=∠BPO
∴△APQ∽△BPO,
∴
∴AQ·BP=AP·BO=3×1=3
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點A(1,a)和點B(4,b)在直線y=﹣x+m上,則a與b的大小關(guān)系是( 。
A. a>bB. a<b
C. a=bD. 與m的值有關(guān)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD是△ABC的中線,BE是△ABD的中線,若△ABC的面積為20,則△ABE的面積為( )
A.5 B.10 C.15 D.18
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩公司為“見義勇為基金會”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人數(shù)比乙公司的人數(shù)多20%.
請你根據(jù)以上信息,提出一個用分式方程解決的問題,并寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是一個平行四邊形,BE⊥CD于點E,BF⊥AD于點F,
(1)請用圖中表示的字母表示出平行線AD與BC之間的距離;
(2)若BE=2cm,BF=4cm,求平行線AB與CD之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級350名學(xué)生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(成績x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計圖表:
請根據(jù)所給信息,解答下列問題:
(1)a= ,b= ;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績的中位數(shù)會落在 分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該年級參加這次比賽的350名學(xué)生中成績“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店上月的營業(yè)額是a萬元,本月比上月增長15%,那么本月的營業(yè)額是( )
A.15%(a+1)萬元
B.15% a萬元
C.(1+15%)a萬元
D.(1+15%)2a萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知射線AB與直線CD交于點O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com