【題目】某校七年級(jí)四個(gè)班級(jí)的學(xué)生義務(wù)為校植樹(shù).一班植樹(shù)x棵,二班植樹(shù)的棵樹(shù)比一班的2倍少40棵,三班植樹(shù)的棵數(shù)比二班的一半多30棵,四班植樹(shù)的棵數(shù)比三班的一半多20棵.
(1)求四個(gè)班共植樹(shù)多少棵?(用含x的式子表示)
(2)若三班和四班植樹(shù)一樣多,那么植樹(shù)最多的班級(jí)比植樹(shù)最少的班級(jí)多植樹(shù)多少棵?
【答案】
(1)解:一班植樹(shù)棵數(shù)為x,二班棵數(shù)為2x﹣40,三班棵數(shù)為 ,四班棵數(shù)為 .
所以,四個(gè)班共植樹(shù)棵數(shù)為:
(2)解:根據(jù)題意,得 ,
解得x=30.
當(dāng)x=30時(shí),一班植樹(shù)30棵,二班植樹(shù)20棵,三班植樹(shù)40棵,四班植樹(shù)40棵40﹣20=20.
答:植樹(shù)最多的班級(jí)比植樹(shù)最少的班級(jí)多植樹(shù)20棵
【解析】(1)根據(jù)題意可列出四個(gè)班各自的棵數(shù),求出四個(gè)班的和即可;(2)根據(jù)三班和四班植樹(shù)一樣多可列出一元一次方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為6的等邊三角形,P是AC邊上一動(dòng)點(diǎn),由A向C運(yùn)動(dòng)(與A、C不重合),Q是CB延長(zhǎng)線上一點(diǎn),與點(diǎn)P同時(shí)以相同的速度由B向CB延長(zhǎng)線方向運(yùn)動(dòng)(Q不與B重合),過(guò)P作PE⊥AB于E,連接PQ交AB于D.
(1)當(dāng)∠BQD=30°時(shí),求AP的長(zhǎng);
(2)證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)D是線段PQ的中點(diǎn);
(3)當(dāng)運(yùn)動(dòng)過(guò)程中線段ED的長(zhǎng)是否發(fā)生變化?如果不變,求出線段ED的長(zhǎng);如果變化請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形、矩形、菱形都具有的特征是( )
A. 對(duì)角線互相平分; B. 對(duì)角線相等;
C. 對(duì)角線互相垂直; D. 對(duì)角線平分一組對(duì)角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與軸的另一個(gè)交點(diǎn)為A(-2,0).
(1)求二次函數(shù)的解析式
(2)在拋物線上是否存在一點(diǎn)P,使△AOP的面積為3,若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】23 , 33 , 和43分別可以按如圖所示方式“分裂”成2個(gè)、3個(gè)和4個(gè)連續(xù)奇數(shù)的和.83也能按此規(guī)律進(jìn)行“分裂”,則83“分裂”出的奇數(shù)中最大的是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是經(jīng)過(guò)∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠a.
(1)若直線CD經(jīng)過(guò)∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請(qǐng)解決下面兩個(gè)問(wèn)題:
①如圖l,若∠BCA=90°,∠a=90°,則BECF;EF|BE﹣AF|(填“>”,“<”或“=”);
②如圖(2),若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件 , 使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖,若直線CD經(jīng)過(guò)∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)如圖,把∠AOB繞著O點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度,得∠A′OB′,指出圖中所有相等的角.
(2)如圖,BD平分∠ABC,BE分∠ABC分2:5兩部分,∠DBE=21°,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件是隨機(jī)事件的是( )
A.小明購(gòu)買彩票中獎(jiǎng)
B.在標(biāo)準(zhǔn)大氣壓下,水加熱到100°時(shí)沸騰
C.在一個(gè)裝有藍(lán)球和黃球的袋中,摸出紅球
D.一名運(yùn)動(dòng)員的速度為40米/秒
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com