【題目】(1)嘗試:如圖①已知A,E,B三點(diǎn)在同一直線上且∠A=B=DEC=90°,求證:ADE∽△BEC;

(2)一名同學(xué)在嘗試了上題后還發(fā)現(xiàn):如圖②、圖③,只要A,E,B三點(diǎn)在同一直線上且∠A=B=DEC,(1)中的結(jié)論總成立.你同意嗎?請(qǐng)選擇其中之一說明理由.

【答案】(1)見解析;(2)同意,理由見解析

【解析】1)利用已知得出∠D=CEB,以及∠A=B即可得出△ADE∽△BEC

2)利用已知得出∠D=CEB,進(jìn)而求出△ADE∽△BEC

1∵∠A=B=DEC=90°,∴∠DEA+∠CEB=90°,

∵∠DEA+∠D=90°,∴∠D=CEB,∴△ADE∽△BEC

2)同意.選擇圖②說明理由:

∵∠A=∠B=∠DEC,∠A+∠D=∠DEC+∠CEB,

∴∠D=∠CEB,

∴△ADE∽△BEC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.則下列結(jié)論: ①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論__________(填編號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)AB⊙O上,直線AC⊙O的切線,OC⊥OB,連接ABOC于點(diǎn)D

1ACCD相等嗎?為什么?

2)若AC=2,AO=,求OD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C為直角,CDAB于點(diǎn)D,BC3,AB5,寫出其中的一對(duì)相似三角形是        ,它們的相似比為    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,是由幾個(gè)小立方塊所搭幾何體的俯視圈,小立方塊中的數(shù)字表示在該位置小立方塊的個(gè)數(shù).

1)請(qǐng)?jiān)诰W(wǎng)格內(nèi)畫出從正面和從左面看到的這個(gè)幾何體的形狀圖.

2)如圖,是小明用9個(gè)棱長(zhǎng)為1的小立方塊積木搭成的幾何體的俯視圖,小立方塊中的數(shù)字表示在該位置小立方塊的個(gè)數(shù),他請(qǐng)小亮用盡可能少的同樣大小的立方塊在旁邊再搭建一個(gè)幾何體,使小亮所搭建的幾何體恰好可以和小明所搭建的幾何體拼成一個(gè)大的正方體(即拼大正方體時(shí)將其中一個(gè)幾何體翻轉(zhuǎn),且假定組成每個(gè)幾何體的立方塊粘合在一起),則:

小亮至少還需要 個(gè)小正方體;

上面中小亮所搭幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在ABC中,∠C=90°AD是∠BAC的平分線,DEABE,FAC上,BD=DF;

求證:(1CF=EB

2AB=AF+2EB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了加強(qiáng)校園周邊治安綜合治理,警察巡邏車在學(xué)校旁邊的一條東西方向的公路上執(zhí)行治安巡邏,如果規(guī)定向東為正,向西為負(fù),從出發(fā)點(diǎn)開始所走的路程(單位:千米)為:

1)此時(shí),這輛巡邏車司機(jī)如何向警務(wù)處描述他現(xiàn)在的位置?

2)已知每千米耗油升,如果警務(wù)處命令其巡邏車馬上返回出發(fā)點(diǎn),這次巡邏共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點(diǎn),以CE為直徑作O,AB與O相切于點(diǎn)D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結(jié)果保留π和根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案