【題目】學(xué)校在假期內(nèi)對教室內(nèi)的黑板進行整修,需在規(guī)定日期內(nèi)完成,如果由甲工程小組做,恰好按期完成;如果由乙工程小組做,則要超過規(guī)定日期15天;如果兩組合作了10天,余下部分由乙組獨做,正好在規(guī)定日期內(nèi)完成.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲組每天的施工費用為500元,乙組每天的施工費用為300元,為了縮短工期在假期內(nèi)盡快完成任務(wù),學(xué)校最終決定該工程由甲、乙兩組合做來完成,那么該工程施工費用是多少?
【答案】(1)這項工程的規(guī)定時間是30天;(2)該工程的費用為14400元
【解析】
(1)設(shè)這項工程的規(guī)定時間是x天,根據(jù)甲、乙隊先合做10天,余下的工程由甲隊單獨需要10天完成,可得出方程解答即可;
(2)先計算甲、乙合作需要的時間,然后計算費用即可.
解:(1)設(shè)這項工程的規(guī)定時間是x天,根據(jù)題意得:
()×10+=1.
解得:x=30.
經(jīng)檢驗x=30是原分式方程的解.
答:這項工程的規(guī)定時間是30天.
(2)該工程由甲、乙隊合做完成,所需時間為:1÷()=18(天),
則該工程施工費用是:18×(500+300)=14400(元),
答:該工程的費用為14400元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標(biāo)。
(2)求當(dāng)t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標(biāo).
(3)當(dāng)t=2時,在坐標(biāo)平面內(nèi),是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1.
(1)分別寫出A,B,C三點的坐標(biāo);
(2)作△ABC關(guān)于y軸的對稱圖形△A′B′C′(不寫作法),想一想:關(guān)于y軸對稱的兩個點之間有什么關(guān)系?
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰直角△ABC中,∠ACB=90°,P是線段BC上一動點(與點B、C不重合),連接AP,延長BC至點Q,使得CQ=CP,過點Q作QH⊥AP于點H,交AB于點M.
(1)當(dāng)AP平分∠BAC時,試說明AM=AN.
(2)若∠PAC=m,求∠AMQ的大小(用含m的式子表示).
(3)用等式表示線段MB與PQ之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小李制作了一張△ABC紙片,點D、E分別在邊AB、AC上,現(xiàn)將△ABC沿著DE折疊壓平,使點A落在點A′位置.若∠A=75°,則∠1+∠2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點O順時針旋轉(zhuǎn)75°至OA’B’C’的位置.若OB=,∠C=120°,則點B’的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點O為圓心的圓過點A(5,0),直線y=kx-2k+3(k≠0)與⊙O交于B、C兩點,則弦BC的長的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店銷售某種水果,原來每箱售價元,每星期可賣箱.為了促銷,該水果店決定降價銷售.市場調(diào)查反映:每降價元,每星期可多賣箱.已知該水果每箱的進價是元,設(shè)該水果每箱售價元,每星期的銷售量為箱.
求與之間的函數(shù)關(guān)系式;
當(dāng)每箱售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?
若該水果店銷售這種水果每星期想要獲得不低于元的利潤,每星期至少要銷售該水果多少箱?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com