【題目】在中,平分,,,,則的長為( )
A.6B.7C.8D.9
【答案】C
【解析】
在AC上截取AE=AB,連接DE,證明△ABD≌△AED,得到∠B=∠AED,AB=AE,再證明CD=CE,進而代入數(shù)值解答即可.
解:在AC上截取AE=AB,連接DE,
∵AD平分∠BAC,
∴∠BAD=∠DAC,
在△ABD和△AED中,
,
∴△ABD≌△AED(SAS),
∴∠B=∠AED,∠ADB =∠ADE, AB=AE,
又∠B=2∠ADB
∴∠AED=2∠ADB,∠BDE=2∠ADB,
∵∠AED=∠C+∠EDC=2∠ADB,∠BDE=∠C+∠DEC=2∠ADB,
∴∠DEC =∠EDC,
∴CD=CE,
∵,,
∴AC =AE+CE=AB+CD = 3+5=8.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖可以自由轉(zhuǎn)動的轉(zhuǎn)盤被等分,指針落在每個扇形內(nèi)的機會均等.
現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向數(shù)字的概率為________;
小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,過作一直線與相交于點,過作垂直于點,過作垂直于點,在上截取,再過作垂直交于.若.則與四邊形的面積之和為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE、DF分別是△ABD和△ACD的高,連接EF交AD于G,下列結(jié)論:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④當∠BAC為60°時,△AEF是等邊三角形,其中正確的結(jié)論的個數(shù)為( 。
A.2B.3C.4D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校在假期內(nèi)對教室內(nèi)的黑板進行整修,需在規(guī)定日期內(nèi)完成,如果由甲工程小組做,恰好按期完成;如果由乙工程小組做,則要超過規(guī)定日期15天;如果兩組合作了10天,余下部分由乙組獨做,正好在規(guī)定日期內(nèi)完成.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲組每天的施工費用為500元,乙組每天的施工費用為300元,為了縮短工期在假期內(nèi)盡快完成任務,學校最終決定該工程由甲、乙兩組合做來完成,那么該工程施工費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(如圖,△ABC 中,AB=AC,以 AB 為直徑的 O 與 BC 相交于點 D,與 CA 的延長線相交于點 E,過點 D 作 DF⊥AC 于 F.
(1)求證:DF 是 ⊙O 的切線;
(2)若 AC=3AE,求的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是弧的中點,⊙O的切線BD交AC的延長線于點D,E是OB的中點,CE的延長線交切線BD于點F,AF交⊙O于點H,連接BH.
⑴求證:AC=CD.
⑵若OB=2,求BH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于點D,點O在AB上,⊙O經(jīng)過A、D兩點,交AC于點E,交AB于點F.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑是2cm,E是弧AD的中點,求陰影部分的面積(結(jié)果保留π和根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的圖象經(jīng)過點、,頂點為,與軸交于點.
求拋物線的解析式和頂點的坐標;
如圖,為線段上一點,過點作軸平行線,交拋物線于點,當的面積最大時,求點的坐標;
如圖,若點是直線上的動點,點、、所構(gòu)成的三角形與相似,請直接寫出所有點的坐標;
如圖,過作軸于點,是軸上一動點,是線段上一點,若,則的最大值為________,最小值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com