【題目】如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長分別是方程x2—7x+12=0的兩根(OA<0B),動點P從點A開始在線段AO上以每秒l個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,設(shè)點P、Q運動的時間為t秒.
(1)求A、B兩點的坐標(biāo)。
(2)求當(dāng)t為何值時,△APQ與△AOB相似,并直接寫出此時點Q的坐標(biāo).
(3)當(dāng)t=2時,在坐標(biāo)平面內(nèi),是否存在點M,使以A、P、Q、M為頂點的四邊形是平行四邊形?若存在,請直接寫出M點的坐標(biāo);若不存在,請說明理由.
【答案】(1)A(0,3), B(4,0)(2)t=,Q();t=,Q()(3)存在。M1(), M2(),M3()
【解析】
解:(1)由x2-7 x +12=0解得x1=3,x2=4。
∵OA<OB ,∴OA="3" , OB=4。∴A(0,3), B(4,0)。
(2)由OA="3" , OB=4,根據(jù)勾股定理,得AB=5。
由題意得,AP=t, AQ=5-2t 。分兩種情況討論:
①當(dāng)∠APQ=∠AOB時,如圖1,
△APQ∽△AOB。∴,即解得 t=。∴Q()。
②當(dāng)∠AQP=∠AOB時,如圖2,
△APQ∽△ABO。∴,即解得 t=。∴Q()。
(3)存在。M1(), M2(),M3()。
(1)解出一元二次方程,結(jié)合OA<OB即可求出A、B兩點的坐標(biāo)。
(2)分∠APQ=∠AOB和∠AQP=∠AOB兩種情況討論即可。
(3)當(dāng)t=2時,如圖,
OP=2,BQ=4,∴P(0,1),Q()。
若以A、P、Q、M為頂點的四邊形是平行四邊形,則
①當(dāng)AQ為對角線時,點M1的橫坐標(biāo)與點Q的橫坐標(biāo)相同,縱坐標(biāo)為。∴M1()。
②當(dāng)PQ為對角線時,點M2的橫坐標(biāo)與點Q的橫坐標(biāo)相同,縱坐標(biāo)為。∴M2()。
③當(dāng)AP為對角線時,點Q、M3關(guān)于AP的中點對稱。
由A(0,3),P(0,1)得AP的中點坐標(biāo)為(0,2)。
由Q()得M3的橫坐標(biāo)為,縱坐標(biāo)為。∴M3()。
綜上所述,若以A、P、Q、M為頂點的四邊形是平行四邊形,則M點的坐標(biāo)為
()或()或()。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知平行四邊形ABCD,對角線AC,BD相交于點O,∠OBC=∠OCB.
(1)求證:平行四邊形ABCD是矩形;
(2)請?zhí)砑右粋條件使矩形ABCD為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,M(m,n)且m、n滿足m2+2n2﹣2mn+4n+4=0,B(0,b)為y軸上一動點,繞B點將直線BM順時針旋轉(zhuǎn)45°交x軸于點C,過C作AC⊥BC交直線BM于點A(a,t).
(1)求點M的坐標(biāo);
(2)如圖1,在B點運動的過程中,A點的橫坐標(biāo)是否會發(fā)生變化?若不變,求a的值;若變化,寫出A點的橫坐標(biāo)a的取值范圍;
(3)如圖2,過T(a,0)作TH⊥BM(垂足H在x軸下方),在射線HB上截取HK=HT,連OK,求∠OKB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦銷售商試銷某一品牌電腦(出廠為元/臺)以元/臺銷售時,平均每月可銷售臺,現(xiàn)為了擴大銷售,銷售商決定降價銷售,在原來月份平均銷售量的基礎(chǔ)上,經(jīng)月份的市場調(diào)查,月份調(diào)整價格后,月銷售額達(dá)到元.已知電腦價格每臺下降元,月銷售量將上升臺.
求月份到月份銷售額的月平均增長率;
求月份時該電腦的銷售價格.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一棵樹CD的10m高處的B點有兩只猴子,它們都要到A處池塘邊喝水,其中一只猴子沿樹爬下走到離樹20m處的池塘A處,另一只猴子爬到樹頂D后直線躍入池塘的A處.如果兩只猴子所經(jīng)過的路程相等,試問這棵樹多高?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖可以自由轉(zhuǎn)動的轉(zhuǎn)盤被等分,指針落在每個扇形內(nèi)的機會均等.
現(xiàn)隨機轉(zhuǎn)動轉(zhuǎn)盤一次,停止后,指針指向數(shù)字的概率為________;
小明和小華利用這個轉(zhuǎn)盤做游戲,若采用下列游戲規(guī)則,你認(rèn)為對雙方公平嗎?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是售貨員與小麗的對話:
根據(jù)對話內(nèi)容解答下列問題:
(1)A,B兩種文具的單價各是多少元?
(2)若購買A,B兩種文具共20件,其中A種文具的數(shù)量少于10件,且購買總費用不超過260元,共有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,BD、CD分別平分∠ABC,∠ACB,過點D作EF//BC交AB、AC于點E、F,試說明 BE+CF=EF的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校在假期內(nèi)對教室內(nèi)的黑板進(jìn)行整修,需在規(guī)定日期內(nèi)完成,如果由甲工程小組做,恰好按期完成;如果由乙工程小組做,則要超過規(guī)定日期15天;如果兩組合作了10天,余下部分由乙組獨做,正好在規(guī)定日期內(nèi)完成.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲組每天的施工費用為500元,乙組每天的施工費用為300元,為了縮短工期在假期內(nèi)盡快完成任務(wù),學(xué)校最終決定該工程由甲、乙兩組合做來完成,那么該工程施工費用是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com