【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,CD、CM分別是斜邊上的高和中線,那么下列結(jié)論中錯(cuò)誤的是( )
A.CM=ACB.∠ACM=∠DCBC.AD=DMD.DB=4AD
【答案】D
【解析】
根據(jù)三角形的內(nèi)角和定理求出∠A=60°,再結(jié)合根據(jù)直角三角形的斜邊上的中線性質(zhì)和等邊三角形的性質(zhì)逐項(xiàng)進(jìn)行判斷.
解:∵在Rt△ABC中,∠ACB=90°,∠B=30°
∴∠A=60°
又∵CM是斜邊上的中線
∴CM=AM=BM
∴△ACM是等邊三角形
∴A. CM=AC,正確
∵CD是斜邊上的高
∴∠ACD=∠DCM=∠MCB=∠B=30°
∴∠ACM=∠DCB=60°
∴B. ∠ACM=∠DCB,正確;C. AD=DM正確
∵AM=BM,AD=DM
∴DB=3AD
∴D. DB=4AD,錯(cuò)誤
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E.F分別在邊AD、CD上,∠EBF=45°,則△EDF
的周長(zhǎng)等于_______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠C=90°,AC=3,BC=4,∠ABC和∠BAC的角平分線的交點(diǎn)是點(diǎn)D,則△ABD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廊橋是我國(guó)古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為,為保護(hù)廊橋的安全,在該拋物線上距水面高為8米的點(diǎn)、處要安裝兩盞警示燈,則這兩盞燈的水平距離是____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD內(nèi)接于圓O,∠BAD=60°,AC為圓O的直徑.AC交BD于P點(diǎn)且PB=2,PD=4,則AD的長(zhǎng)為( )
A. 2 B. 2 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90° ,AC=BC=4 點(diǎn)D是邊AB上的動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)A、B不重合),過點(diǎn)D作DE⊥AB交射線BC于點(diǎn)E,聯(lián)結(jié)AE,點(diǎn)F是AE的中點(diǎn),過點(diǎn)D、F作直線,交AC于點(diǎn)G,聯(lián)結(jié)CF、CD.
(1)當(dāng)點(diǎn)E在邊BC上,設(shè)DB=, CE=
①寫出關(guān)于的函數(shù)關(guān)系式及定義域;
②判斷△CDF的形狀,并給出證明;
(2)如果AE=,求DG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求證:OF∥BC;
(2)求證:△AFO≌△CEB;
(3)若EB=5cm,CD=10cm,設(shè)OE=x,求x值及陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于點(diǎn)D,DE⊥AB,垂足為E,若AC=3,AB=5,則DE的長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DE,DF分別是△ABD和△ACD的高.得到下面四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時(shí),四邊形AEDF是正方形;④ AE2+DF2=AF2+DE2.上述結(jié)論中正確的是( )
A. ②③ B. ②④ C. ①②③ D. ②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com