【題目】解下列方程:

1x26x+90;

2x24x12;

33x2x5)=4x10

【答案】1x1x23;(2x1=﹣2,x26;(3x1,x2

【解析】

1)運用因式分解法即可求解;

2)方程移項后運用因式分解法求解即可;

3)方程移項后運用因式分解法求解即可.

1x26x+90

x320

x30

x1x23;

2x24x12

x24x120

x+2)(x6)=0

x+20x60

x1=﹣2,x26;

33x2x5)=4x10

3x2x5)﹣22x5)=0

2x5)(3x2)=0

2x503x20

x1,x2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x22x1

1)求此函數(shù)圖象的頂點A以及它與y軸交點B的坐標.

2)求此函數(shù)圖象與x軸的交點CD的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)符合一次函數(shù),且時,時,

1)求一次函數(shù)的表達式;

2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?

3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,由邊長為1的小正方形構成的網格中,每個小正方形的頂點叫做格點,的頂點在格點上.

1)直接寫出的面積為  ;

2)請用無刻度的直尺畫出將點順時針旋轉角后得到的線段,并寫出點的坐標為  ;

3)若一個多邊形各點都不在⊙M外,則稱⊙M全覆蓋這個5多邊形,已知點,⊙M全覆蓋四邊形,則⊙M的直徑最小為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】制作一種產品,需先將材料加熱達到60 ℃后,再進行操作.設該材料溫度為y),從加熱開始計算的時間為xmin).據了解,當該材料加熱時,溫度y與時間x成一次函數(shù)關系;停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知該材料在操作加熱前的溫度為15 ℃,加熱5分鐘后溫度達到60 ℃

1)分別求出將材料加熱和停止加熱進行操作時,yx的函數(shù)關系式;

2)根據工藝要求,當材料的溫度低于15 ℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線yx1與拋物線y=﹣x2+6x5相交于A、D兩點.拋物線的頂點為C,連結AC

1)求A,D兩點的坐標;

2)點P為該拋物線上一動點(與點AD不重合),連接PAPD

①當點P的橫坐標為2時,求△PAD的面積;

②當∠PDA=∠CAD時,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店經銷一種產品,其標價比進價每件多元,且商店用元購進這種商品的數(shù)量和這種商品元的銷售額所售出的件數(shù)相同.

求這種商品的進價及標價;

經過--段時間的銷售,商店發(fā)現(xiàn),以標價出售這種商品,每天可售出件,每漲價元,則少賣出件,要使這種商品每天的銷售額最大,求該商品每件應漲價多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD在第一象限內,邊BCx軸平行,A,B兩點的縱坐標分別為4,2,反比例函數(shù)yx0)的圖象經過A,B兩點,若菱形ABCD的面積為2,則k的值為( 。

A. 2B. 3C. 4D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,正方形中,點是邊延長線上一點,連接,過點,垂足為點,交于點

1)如圖甲,求證:;

2)如圖乙,連接,若,,求的值.

查看答案和解析>>

同步練習冊答案