【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經試銷發(fā)現,銷售量(件)與銷售單價(元)符合一次函數,且時,;時,.
(1)求一次函數的表達式;
(2)若該商場獲得利潤為元,試寫出利潤與銷售單價之間的關系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少元?
(3)若該商場獲得利潤不低于500元,試確定銷售單價的范圍.
【答案】解:(1)一次函數的表達式為
(2)當銷售單價定為87元時,商場可獲得最大利潤,最大利潤是891元
(3)銷售單價的范圍是.
【解析】
試題(1)列出二元一次方程組解出k與b的值可求出一次函數的表達式.
(2)依題意求出W與x的函數表達式可推出當x=87時商場可獲得最大利潤.
(3)由w=500推出x2﹣180x+7700=0解出x的值即可.
試題解析:(1)根據題意得:,解得k=﹣1,b=120.所求一次函數的表達式為;
(2)=,∵拋物線的開口向下,∴當x<90時,W隨x的增大而增大,而銷售單價不低于成本單價,且獲利不得高于45%,即60≤x≤60×(1+45%),∴60≤x≤87,∴當x=87時,W==891,∴當銷售單價定為87元時,商場可獲得最大利潤,最大利潤是891元.
(3)令=500,解方程,解得,,又∵60≤≤87 ,所以當≥500時,70≤≤87.
科目:初中數學 來源: 題型:
【題目】甲乙兩人在玩轉盤游戲時,把轉盤A、B分別分成4等份、3等份,并在每一份內標上數字,如圖所示.游戲規(guī)定,轉動兩個轉盤停止后,指針所指的兩個數字之和為奇數時,甲獲勝;為偶數時,乙獲勝.
(1)用列表法(或畫樹狀圖)求甲獲勝的概率;
(2)你認為這個游戲規(guī)則對雙方公平嗎?請簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知是的函數,自變量的取值范圍為,下表是與的幾組對應值
0 | 1 | 2 | 3 | 3.5 | 4 | 4.5 | … | |
1 | 2 | 3 | 4 | 3 | 2 | 1 | … |
小明根據學習函數的經驗,利用上述表格所反映出的與之間的變化規(guī)律,對該函數的圖象與性質進行了探究.下面是小明的探究過程,請補充完整:
(1)如圖,在平面直角坐標系中,指出了以上表中各對對應值為坐標的點. 根據描出的點,畫出該函數的圖象.
(2)根據畫出的函數圖象填空.
①該函數圖象與軸的交點坐標為_____.
②直接寫出該函數的一條性質.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個紙盒內有張完全相同的卡片,分別標號為,,,.隨機抽取一張卡片后不放回,再隨機抽取另一張卡片.
(1)用列舉法求“兩次抽出卡片的標號等于”的概率;
(2)小明同學連續(xù)做了次試驗,這次試驗沒有一次出現“兩次抽出卡片的標號和等于”.他說,“第次試驗我一定能夠‘兩次抽出卡片的標號和等于’”.你認為他說得對嗎,為什么?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校將進行“校春季運動會”,現從全校學生中選出名同學參加運動會相關服務工作,其中名男生,名女生.
(1)若從這名同學中隨機選取人作為聯絡員,求選到男生的概率.
(2)若運動會的某項服務工作只在,兩位同學中選一人,準備用游戲的方式決定誰參加.游戲規(guī)則是:四個乒乓球上的數字分別為,,,(乒乓球只有數字不同,其余完全相同),將乒乓球放在不透明的紙箱中,從中任意摸取兩個,若取到的兩個乒乓球上的數字之和大于則選,否則選,從是否公平的角度看,該游戲規(guī)則是否合理,用樹狀圖或表格說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,,,是鄭州市二七區(qū)三個垃圾存放點,點,分別位于點的正北和正東方向,米,八位環(huán)衛(wèi)工人分別測得的長度如下表:
甲 | 乙 | 丙 | 丁 | 戊 | 戌 | 申 | 辰 | |
BC(單位:米) | 84 | 76 | 78 | 82 | 70 | 84 | 86 | 80 |
他們又調查了各點的垃圾量,并繪制了下列尚不完整的統(tǒng)計圖2,圖3:
(1)求表中長度的平均數、中位數、眾數;
(2)求處的垃圾量,并將圖2補充完整;
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,E、F、G、H分別是BD、BC、AC、AD的中點,且AB=CD.下列結論:①EG⊥FH,②四邊形EFGH是矩形,③HF平分∠EHG,④EG= (BC-AD),⑤四邊形EFGH是菱形.其中正確的個數是 ( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為進一步深化基教育課程改革,構建符合素質教育要求的學校課程體系,某學校自主開發(fā)了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.
(1)學生小紅計劃選修兩門課程,請寫出所有可能的選法;
(2)若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線:與直線:交于點,已知點的橫坐標為-5,直線與軸交于點,與軸交于點,直線與軸交于點.
(1)求直線的解析式;
(2)將直線向上平移6個單位得到直線,直線與軸交于點,過點作軸的垂線,若點為垂線上的一個動點,點為軸上的一個動點,當的值最小時,求此時點的坐標及的最小值;
(3)已知點、分別是直線、上的兩個動點,連接、、,是否存在點、,使得是以點為直角頂點的等腰直角三角形,若存在,求點的坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com