【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD.BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn).連接DH,交BE于點(diǎn)G.連接CG.
(1)求證:△ADC≌△FDB;
(2)求證:
(3)判斷△ECG的形狀,并證明你的結(jié)論.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)△ECG為等腰直角三角形,理由見(jiàn)解析.
【解析】
(1)首先根據(jù)AB=BC,BE平分∠ABC,得到BE⊥AC,CE=AE,進(jìn)一步得到∠ACD=∠DBF,結(jié)合CD=BD,即可證明出△ADC≌△FDB;
(2)由△ADC≌△FDB得到AC=BF,結(jié)合CE=AE,即可證明出結(jié)論;
(3)由點(diǎn)H是BC邊的中點(diǎn),得到GH垂直平分BC,即GC=GB,由∠DBF=∠GBC=∠GCB=∠ECF,得∠ECO=45°,結(jié)合BE⊥AC,即可判斷出△ECG的形狀.
(1)∵AB=BC,BE平分∠ABC
∴BE⊥AC
∵CD⊥AB
∴∠ACD=∠ABE(同角的余角相等)
又∵CD=BD
∴△ADC≌△FDB
(2)∵AB=BC,BE平分∠ABC
∴AE=CE
則CE=AC
由(1)知:△ADC≌△FDB
∴AC=BF
∴CE=BF
(3)△ECG為等腰直角三角形,理由如下:
由點(diǎn)H是BC的中點(diǎn),得GH垂直平分BC,從而有CG=BG,
則∠EGC=2∠CBG=∠ABC=45°,
又∵BE⊥AC,
故△ECG為等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,E為正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),且CE=AC,AE交CD于點(diǎn)F,那么∠AFC的度數(shù)為( )
A. 112.5° B. 125° C. 135° D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,直線MN過(guò)點(diǎn)B,且∠MBC=∠BAC.半徑OD⊥BC,垂足為H,AD交BC于點(diǎn)G,DE⊥AB于點(diǎn)E,交BC于點(diǎn)F.
(1)求證:MN是⊙O的切線;
(2)求證:DE= BC;
(3)若tan∠CAG= ,DG=4,求點(diǎn)F到直線AD的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司針對(duì)新客戶(hù)優(yōu)惠收費(fèi),首件物品的收費(fèi)標(biāo)準(zhǔn)為:若重量不超過(guò)10千克,則免運(yùn)費(fèi);當(dāng)重量為千克時(shí),運(yùn)費(fèi)為元;第二件物品的收費(fèi)標(biāo)準(zhǔn)為:當(dāng)重量為千克時(shí),運(yùn)費(fèi)為元。
(1)若新客戶(hù)所奇首件物品的重量為13千克,則運(yùn)費(fèi)是多少元?
(2)若新客戶(hù)所寄首件物品的運(yùn)費(fèi)為32元,則物品的重量是多少千克?
(3)若新客戶(hù)所寄首件物品與第二件物品的重量之比為2:5,共付運(yùn)費(fèi)為60元,則兩件物品的重量各是多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,現(xiàn)有5張寫(xiě)著不同數(shù)字的卡片,請(qǐng)按要求完成下列問(wèn)題:
若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請(qǐng)運(yùn)用所學(xué)的計(jì)算方法,寫(xiě)出兩個(gè)不同的運(yùn)算式,使四個(gè)數(shù)字的計(jì)算結(jié)果為24.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E為CD上一點(diǎn),且∠BAE=45°.若CD=4,則△ABE的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點(diǎn)E,交∠ACB的外角平分線于點(diǎn)F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長(zhǎng);
(3)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CE=2DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正確結(jié)論的個(gè)數(shù)是( )
A.2 B.3 C.4 D.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com