【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,直線MN過點(diǎn)B,且∠MBC=∠BAC.半徑OD⊥BC,垂足為H,AD交BC于點(diǎn)G,DE⊥AB于點(diǎn)E,交BC于點(diǎn)F.
(1)求證:MN是⊙O的切線;
(2)求證:DE= BC;
(3)若tan∠CAG= ,DG=4,求點(diǎn)F到直線AD的距離.
【答案】
(1)證明:∵AB是直徑,
∴∠BCA=90°,
∴∠ABC+∠CAB=90°,
∵∠MBC=∠BAC,
∴∠MBC+∠ABC=90°,
∴∠ABM=90°,
即AB⊥MN,
∴MN是⊙O的切線.
(2)證明:∵OD⊥BC,
∴BH=CH,
在△ODE和△OBG中,
,
∴△ODE≌△OBG,
∴DE=BH= BC.
(3)解:作FJ⊥DG于J.
易證∠CAH=∠HDG=∠GFJ
∴tan∠GFJ= = ,設(shè)GJ=x,則FG=2x,F(xiàn)G= x,
∵∠EDA+∠EAD=90°,∠CHA+∠CAH=90°,∠EAD=∠ACH,
∴∠EDA=∠CHA=∠DHF,
∴DF=FG= x,
在Rt△DFJ中,∵DF2=DJ2+FJ2,
∴5x2=4x2+(4﹣x)2,
解得x=2,
∴FJ=4,
∴點(diǎn)F到直線AD的距離為4.
【解析】(1)要證明MN是⊙O的切線,只要證明AB⊥MN即可;(2)由△ODE≌△OBG,推出DE=BH,再根據(jù)垂徑定理即可證明;(3)作FJ⊥DG于J,由tan∠GFJ=,設(shè)GJ=x,則FG=2x,F(xiàn)G=x,再證明DF=FG,在Rt△DFJ中,根據(jù)勾股定理列出方程解之即可.
【考點(diǎn)精析】通過靈活運(yùn)用垂徑定理和圓周角定理,掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB=60°,∠AOB的邊OA上有一動(dòng)點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO、射線OB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動(dòng),速度為lcm/s;P、Q同時(shí)出發(fā),同時(shí)射線OC繞著點(diǎn)O從OA上以每秒5°的速度順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間是t(s).
(1)當(dāng)點(diǎn)P在MO上運(yùn)動(dòng)時(shí),PO=______cm(用含t的代數(shù)式表示);
(2)當(dāng)點(diǎn)P在線段MO上運(yùn)動(dòng)時(shí),t為何值時(shí),OP=OQ?此時(shí)射線OC是∠AOB的角平分線嗎?如果是請(qǐng)說明理由.
(3)在射線OB上是否存在P、Q相距2cm?若存在,請(qǐng)求出t的值并求出此時(shí)∠BOC的度數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘一名部門經(jīng)理,對(duì)甲、乙、丙三名候選人進(jìn)行了三項(xiàng)素質(zhì)測(cè)試.各項(xiàng)測(cè)試成績(jī)?nèi)绫砀袼荆?/span>
測(cè)試項(xiàng)目 | 測(cè)試成績(jī) | ||
甲 | 乙 | 丙 | |
專業(yè)知識(shí) | 74 | 87 | 90 |
語言能力 | 58 | 74 | 70 |
綜合素質(zhì) | 87 | 43 | 50 |
(1)如果根據(jù)三次測(cè)試的平均成績(jī)確定人選,那么誰將被錄用?
(2)根據(jù)實(shí)際需要,公司將專業(yè)知識(shí)、語言能力和綜合素質(zhì)三項(xiàng)測(cè)試得分按4:3:1的比例確定每個(gè)人的測(cè)試總成績(jī),此時(shí)誰將被錄用?
(3)請(qǐng)重新設(shè)計(jì)專業(yè)知識(shí)、語言能力和綜合素質(zhì)三項(xiàng)測(cè)試得分的比例來確定每個(gè)人的測(cè)試總成績(jī),使得乙被錄用,若重新設(shè)計(jì)的比例為x:y:1,且x+y+1=10,則x= ,y= .(寫出x與y的一組整數(shù)值即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購買甲、乙兩種獎(jiǎng)品共20件.其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元
(1)如果購買甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購買了多少件?
(2)如果購買乙種獎(jiǎng)品的件數(shù)不超過甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)有一點(diǎn)D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,則∠BDC的度數(shù)為( )
A. 100° B. 80° C. 70° D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′,連接CC′.若∠CC′B′=32°,則∠B的大小是( )
A.32°
B.64°
C.77°
D.87°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD.BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn).連接DH,交BE于點(diǎn)G.連接CG.
(1)求證:△ADC≌△FDB;
(2)求證:
(3)判斷△ECG的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的分式方程 = 的解是非負(fù)數(shù),那么a的取值范圍是( )
A.a>1
B.a≥1
C.a≥1且a≠9
D.a≤1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com