【題目】計(jì)算:

(1)

(2)

(3)

(4)

【答案】10;(2-4x3y2;(332yz+16xz-;41

【解析】

1)逆用積的乘方公式可簡(jiǎn)便計(jì)算,最后相加減可得;
2)原式先利用積的乘方及冪的乘方運(yùn)算法則計(jì)算,再利用單項(xiàng)式乘以單項(xiàng)式及單項(xiàng)式除以單項(xiàng)式法則計(jì)算,即可得到結(jié)果;
3)先算乘方,再根據(jù)多項(xiàng)式除以單項(xiàng)式的法則進(jìn)行計(jì)算即可;
4)根據(jù)平方差公式變形計(jì)算即可.

1

8

8

8+19

0;

2

=8x6y3-7xy2÷14x4y3

=-56x7y5÷14x4y3
=-4x3y2

3

32yz+16xz-;

4

=1232-123+1)(123-1
=1232-1232+1
=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)填空:

(ab)(ab)________;

(ab)(a2abb2)________;

(ab)(a3a2bab2b3)________;

(2)猜想:

(ab)(an1an2ban3b2abn2bn1)________(其中n為正整數(shù),且n2);

(3)利用(2)猜想的結(jié)論計(jì)算:

2928272221;

210292823222.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測(cè)井,若將繩三折測(cè)之,繩多4尺,若將繩四折測(cè)之,繩多1尺,繩長(zhǎng)井深各幾何?

譯文:用繩子測(cè)水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長(zhǎng)、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AOB=60°,AOB的邊OA上有一動(dòng)點(diǎn)P,從距離O點(diǎn)18cm的點(diǎn)M處出發(fā),沿線段MO、射線OB運(yùn)動(dòng),速度為2cm/s;動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿射線OB運(yùn)動(dòng),速度為lcm/sP、Q同時(shí)出發(fā),同時(shí)射線OC繞著點(diǎn)OOA上以每秒的速度順時(shí)針旋轉(zhuǎn),設(shè)運(yùn)動(dòng)時(shí)間是ts).

1)當(dāng)點(diǎn)PMO上運(yùn)動(dòng)時(shí),PO=______cm(用含t的代數(shù)式表示);

2)當(dāng)點(diǎn)P在線段MO上運(yùn)動(dòng)時(shí),t為何值時(shí),OP=OQ?此時(shí)射線OCAOB的角平分線嗎?如果是請(qǐng)說明理由.

3)在射線OB上是否存在P、Q相距2cm?若存在,請(qǐng)求出t的值并求出此時(shí)BOC的度數(shù);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給研究制定《中考改革實(shí)施方案》提出合理化建議,教研人員對(duì)九年級(jí)學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,要求被抽查的學(xué)生從物理、化學(xué)、政治、歷史、生物和地理這六個(gè)選考科目中,挑選出一科作為自己的首選科目,將調(diào)查數(shù)據(jù)匯總整理后,繪制出了如圖的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:

(1)被抽查的學(xué)生共有多少人?
(2)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)我市現(xiàn)有九年級(jí)學(xué)生約40000人,請(qǐng)你估計(jì)首選科目是物理的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】乘法公式的探究及應(yīng)用.

數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為a的正方形,B種紙片是邊長(zhǎng)為b的正方形,C種紙片長(zhǎng)為a、寬為b的長(zhǎng)方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形.

(1)請(qǐng)用兩種不同的方法求圖2大正方形的面積.方法1______;方法2_______

(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:(a+b)2,a2+b2ab之間的等量關(guān)系._______

(3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)使長(zhǎng)方形面積為:3a2+7ab+2b2,并對(duì)3a2+7ab+2b2因式分解為_______.

(4)根據(jù)(2)題中的等量關(guān)系,解決如下問題:

①已知:a+b5,a2+b211,求ab的值;

②已知(x2016)2+(x2018)234,求(x2017)2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=90°,AD∥BC,E為AB的中點(diǎn),連接CE,BD,過點(diǎn)E作FE⊥CE于點(diǎn)E,交AD于點(diǎn)F,連接CF,已知2AD=AB=BC.

(1)求證:CE=BD;
(2)若AB=4,求AF的長(zhǎng)度;
(3)求sin∠EFC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司欲招聘一名部門經(jīng)理,對(duì)甲、乙、丙三名候選人進(jìn)行了三項(xiàng)素質(zhì)測(cè)試.各項(xiàng)測(cè)試成績(jī)?nèi)绫砀袼荆?/span>

測(cè)試項(xiàng)目

測(cè)試成績(jī)

專業(yè)知識(shí)

74

87

90

語言能力

58

74

70

綜合素質(zhì)

87

43

50

(1)如果根據(jù)三次測(cè)試的平均成績(jī)確定人選,那么誰將被錄用?

(2)根據(jù)實(shí)際需要,公司將專業(yè)知識(shí)、語言能力和綜合素質(zhì)三項(xiàng)測(cè)試得分按4:3:1的比例確定每個(gè)人的測(cè)試總成績(jī),此時(shí)誰將被錄用?

(3)請(qǐng)重新設(shè)計(jì)專業(yè)知識(shí)、語言能力和綜合素質(zhì)三項(xiàng)測(cè)試得分的比例來確定每個(gè)人的測(cè)試總成績(jī),使得乙被錄用,若重新設(shè)計(jì)的比例為xy:1,且x+y+1=10,則x   y   .(寫出xy的一組整數(shù)值即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD.BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn).連接DH,交BE于點(diǎn)G.連接CG.

(1)求證:△ADC≌△FDB;

(2)求證:

(3)判斷△ECG的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案