【題目】已知:如圖,在中,分別在邊的中點(diǎn),是對(duì)角線,過(guò)點(diǎn)作,交的延長(zhǎng)線于.
(1)求證:四邊形是平行四邊形;
(2)若四邊形是矩形,則四邊形是什么特殊四邊形?并證明你的結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點(diǎn)且AE=2EC,點(diǎn)D在BC邊上且滿足BD=DE,設(shè)BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半圓O,點(diǎn)C、D在弧AB上,連接AD、BD、CD,∠BDC+2∠ABD=90°.
(1)如圖1,求證:DA=DC;
(2)如圖2,作OE⊥BD交半圓O于點(diǎn)E,連接AE交BD于點(diǎn)F,連接AC,求證:∠DFA=∠DAC+∠DAE;
(3)如圖3,在(2)的條件下,設(shè)AC交BD于點(diǎn)G,FG=1,AG=5,求半圓O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0),經(jīng)過(guò)點(diǎn)(1.0),對(duì)稱軸l如圖所示,若M=a+b﹣c,N=2a﹣b,P=a+c,則M,N,P中,值小于0的數(shù)有( 。﹤(gè).
A.2B.1C.0D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出
(1)如圖(1),已知中,,,,求點(diǎn)到的最短距離.
問(wèn)題探究
(2)如圖(2),已知邊長(zhǎng)為3的正方形,點(diǎn)、分別在邊和上,且,,連接、,若點(diǎn)、分別為、上的動(dòng)點(diǎn),連接,求線段長(zhǎng)度的最小值.
問(wèn)題解決
(3)如圖(3),已知在四邊形中,,,,連接,將線段沿方向平移至,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn),點(diǎn)為邊上一點(diǎn),且,連接,的長(zhǎng)度是否存在最小值?若存在,求出最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測(cè)得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),與y軸負(fù)半軸交于點(diǎn)A.
如圖1,拋物線y=a(x+2)(x﹣6)(a>0)與x軸交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),與y軸負(fù)半軸交于點(diǎn)A.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點(diǎn),過(guò)S作x軸的垂線,交拋物線于點(diǎn)P,將線段SC,SP繞點(diǎn)S順時(shí)針旋轉(zhuǎn)任意相同的角到SC1,SP1的位置,使點(diǎn)C,P的對(duì)應(yīng)點(diǎn)C1,P1都在x軸上方,C1C與P1S交于點(diǎn)M,P1P與x軸交于點(diǎn)N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點(diǎn)B,點(diǎn)M在拋物線上,且滿足∠MAB=75°的點(diǎn)M有且只有兩個(gè),求a的取值范圍.
(1)若△ACD的面積為16.
①求拋物線解析式;
②S為線段OD上一點(diǎn),過(guò)S作x軸的垂線,交拋物線于點(diǎn)P,將線段SC,SP繞點(diǎn)S順時(shí)針旋轉(zhuǎn)任意相同的角到SC1,SP1的位置,使點(diǎn)C,P的對(duì)應(yīng)點(diǎn)C1,P1都在x軸上方,C1C與P1S交于點(diǎn)M,P1P與x軸交于點(diǎn)N.求的最大值;
(2)如圖2,直線y=x﹣12a與x軸交于點(diǎn)B,點(diǎn)M在拋物線上,且滿足∠MAB=75°的點(diǎn)M有且只有兩個(gè),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=6,S△ABC=18,正方形DEFG的邊FG在BC上,頂點(diǎn)D,E分別在AB,AC上.
(1)如圖1,過(guò)點(diǎn)A作AH⊥BC于點(diǎn)H,交DE于點(diǎn)K,求正方形DEFG的邊長(zhǎng);
(2)如圖2,在BE上取點(diǎn)M,作MN⊥BC于點(diǎn)N,MQ∥DE交AB于點(diǎn)Q,QP⊥BC于點(diǎn)P,求證:四邊形MNPQ是正方形;
(3)如圖3,在BE上取點(diǎn)R,使RE=FE,連結(jié)RG,RF,若tan∠EBF=.求證:∠GRF=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=ax2+4ax+c(a≠0)經(jīng)過(guò)A(0,4),B(﹣3,1),頂點(diǎn)為C.
(1)求該拋物線的表達(dá)方式及點(diǎn)C的坐標(biāo);
(2)將(1)中求得的拋物線沿y軸向上平移m(m>0)個(gè)單位,所得新拋物線與y軸的交點(diǎn)記為點(diǎn)D.當(dāng)△ACD時(shí)等腰三角形時(shí),求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在(1)中求得的拋物線的對(duì)稱軸上,聯(lián)結(jié)PO,將線段PO繞點(diǎn)P逆時(shí)針轉(zhuǎn)90°得到線段PO′,若點(diǎn)O′恰好落在(1)中求得的拋物線上,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com