【題目】分解因式:2x22=_____

【答案】2x+1)(x1).

【解析】

先提取公因式2,再根據(jù)平方差公式進行二次分解即可求得答案.

解:2x22=2x21=2x+1)(x1).

故答案為:2x+1)(x1).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由于換季,一家服裝店的老板想將某服裝打折銷售,于是她和正在上七年級的兒子商量打折方案,下面是她和兒子商量時的對話情景:
媽媽:“兒子,每件衣服按標價的5折出售,可以嗎?”
兒子:“若每件衣服按標價的5折出售會虧本30元.”
媽媽:“那每件衣服按標價的8折出售呢?”
兒子:“若每件衣服按標價的8折出售將會賺60元.”
……
請根據(jù)上面的信息,解決問題:
(1)求這種服裝的標價.
(2)若要不虧本,至少打幾折?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(0,4),B(8,0),C(8,6)三點.

(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△BCE中,點A時邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.

(1)求證:CB是⊙O的切線;

(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,動點M從點B出發(fā),在BA邊上以每秒2cm的速度向點A勻速運動,同時動點N從點C出發(fā),在CB邊上以每秒cm的速度向點B勻速運動,設運動時間為t秒(0≤t≤5),連接MN.

(1)若BM=BN,求t的值;

(2)若△MBN與△ABC相似,求t的值;

(3)當t為何值時,四邊形ACNM的面積最?并求出最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】反比例反數(shù)y=(x>0)的圖象如圖所示,點B在圖象上,連接OB并延長到點A,使AB=OB,過點A作AC∥y軸交y=(x>0)的圖象于點C,連接BC、OC,S△BOC=3,則k=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】方程x2=2x的根是(
A.x=2
B.x=﹣2
C.x1=0,x2=2
D.x1=0,x2=﹣2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,B點坐標為(3,0),與y軸交于點C(0,﹣3)

(1)求拋物線的解析式;

(2)點P在拋物線位于第四象限的部分上運動,當四邊形ABPC的面積最大時,求點P的坐標和四邊形ABPC的最大面積.

(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.

(1)建立適當?shù)钠矫嬷苯亲鴺讼,①直接寫出O、P、A三點坐標;

②求拋物線L的解析式;

(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

同步練習冊答案