【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.

【答案】
(1)

證明:連接AE,

∵AB是⊙O的直徑,

∴∠AEB=90°,

∴∠1+∠2=90°.

∵AB=AC,

∴∠1= ∠CAB.

∵∠CBF= ∠CAB,

∴∠1=∠CBF

∴∠CBF+∠2=90°

即∠ABF=90°

∵AB是⊙O的直徑,

∴直線BF是⊙O的切線.


(2)

解:過點(diǎn)C作CG⊥AB于G.

∵sin∠CBF= ,∠1=∠CBF,

∴sin∠1= ,

∵在Rt△AEB中,∠AEB=90°,AB=5,

∴BE=ABsin∠1=

∵AB=AC,∠AEB=90°,

∴BC=2BE=2

在Rt△ABE中,由勾股定理得AE= =2 ,

∴sin∠2= = = ,cos∠2= = = ,

在Rt△CBG中,可求得GC=4,GB=2,

∴AG=3,

∵GC∥BF,

∴△AGC∽△ABF,

∴BF= =


【解析】(1)連接AE,利用直徑所對的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°;  
    (2)利用已知條件證得△AGC∽△ABF,利用比例式求得線段的長即可.
【考點(diǎn)精析】掌握勾股定理的概念和圓周角定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為24的正方形ABCD中,有一個(gè)小正方形EFGH,其中E、F、G分別在AB、BC、FD上.若BF= ,則小正方形的周長為( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知凸四邊形ABCD中,∠A=∠C=90°.

(1)如圖1,若DE平分∠ADC,BF平分∠ABC的鄰補(bǔ)角,判斷DEBF位置關(guān)系并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補(bǔ)角,判斷DEBF位置關(guān)系并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有多少個(gè)小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請通過計(jì)算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a+b|+|a-b|-2b=0,在數(shù)軸上給出關(guān)于ab的四種位置關(guān)系如圖所示,則可能成立的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長4m的樓梯AB的傾斜角∠ABD為60°,為了改善樓梯的安全性能,準(zhǔn)備重新建造樓梯,使其傾斜角∠ACD為45°,則調(diào)整后的樓梯AC的長為( 。

A.2 m
B.2 m
C.(2 ﹣2)m
D.(2 ﹣2)m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若∠A=∠D,CD=3,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點(diǎn),拋物線y=ax2﹣2ax+a+4(a<0)經(jīng)過點(diǎn)B.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)已知點(diǎn)M是拋物線上的一個(gè)動(dòng)點(diǎn),并且點(diǎn)M在第一象限內(nèi),連接AM、BM,設(shè)點(diǎn)M的橫坐標(biāo)為m,△ABM的面積為S,求S與m的函數(shù)表達(dá)式,并求出S的最大值;
(3)在(2)的條件下,當(dāng)S取得最大值時(shí),動(dòng)點(diǎn)M相應(yīng)的位置記為點(diǎn)M′.
①寫出點(diǎn)M′的坐標(biāo);
②將直線l繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)得到直線l′,當(dāng)直線l′與直線AM′重合時(shí)停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點(diǎn)C,設(shè)點(diǎn)B、M′到直線l′的距離分別為d1、d2 , 當(dāng)d1+d2最大時(shí),求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.. 計(jì)算題:

(1)8﹣(﹣10)﹣|﹣2|

(2)2 ﹣3+(﹣3)﹣(+5

(3)﹣24×(﹣ +

(4)﹣49 ×10(簡便運(yùn)算)

(5)﹣ ÷(+

(6)3×(﹣38 )﹣4×(﹣38 )﹣38

查看答案和解析>>

同步練習(xí)冊答案