【題目】.. 計算題:
(1)8﹣(﹣10)﹣|﹣2|
(2)2 ﹣3+(﹣3)﹣(+5)
(3)﹣24×(﹣ +﹣)
(4)﹣49 ×10(簡便運算)
(5)﹣ ÷(﹣+)
(6)3×(﹣38 )﹣4×(﹣38 )﹣38
【答案】(1)16;(2)﹣10;(3)2;(4)﹣499;(5);(6)0.
【解析】
(1)減法轉化為加法,計算絕對值,再計算加減可得;
(2)運用加法的交換律和結合律計算可得;
(3)運用乘法分配律計算可得;
(4)原式變形為(﹣50)×10,再利用乘法分配律計算可得;
(5)先計算括號內的加減運算,再計算除法即可得;
(6)先提取公因數(shù),再進一步計算即可.
解:(1)原式=8+10﹣2=16;
(2)原式=(2﹣3)+(﹣3﹣5),
=﹣1﹣9,
=﹣10;
(3)原式=12﹣18+8=2;
(4)原式=(﹣50)×10,
=×10﹣50×10,
=﹣500,
=﹣499;
(5)原式=-÷(﹣+),
=﹣÷(﹣),
=﹣×(﹣8),
=;
(6)原式=(﹣38)×(3﹣4+1),
=(﹣38)×0,
=0.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y=k1x+b與x軸,y軸相交于P,Q兩點,則y= 的圖象相交于A(﹣2,m),B(1,n)兩點,連接OA,OB,給出下列結論:①k1k2<0;②m+ n=0;③S△AOP=S△BOQ;④不等式k1x+b> 的解集在x<﹣2或0<x<1,其中正確的結論是( )
A.②③④
B.①②③④
C.③④
D.②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,按如下步驟作圖: ①分別以A,C為圓心,大于 AC的長為半徑畫弧,兩弧交于P,Q兩點;
②作直線PQ,分別交AB,AC于點E,D,連接CE;
③過C作CF∥AB交PQ于點F,連接AF.
(1)求證:△AED≌△CFD;
(2)求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸上A、B兩點對應的數(shù)為0、10,P為數(shù)軸上一點
(1)點P為AB線段的中點,點P對應的數(shù)為 .
(2)數(shù)軸上有點P,使P到A,B的距離之和為20,點P對應的數(shù)為 .
(3)若點P點表示6,點M以每秒鐘5個單位的速度從A點向右運動,點N以每秒鐘1個單位的速度從B點向右運動,t秒后有PM=PN,求時間t的值(畫圖寫過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度數(shù).
小明的思路是:如圖2,過P作PE∥AB,通過平行線性質,可得∠APC=50°+60°=110°.
問題遷移:
(1)如圖3,AD∥BC,點P在射線OM上運動,當點P在A、B兩點之間運動時,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之間有何數(shù)量關系?請說明理由;
(2)在(1)的條件下,如果點P在A、M兩點之間和B、O兩點之間上運動時(點P與點A、B、O三點不重合),請你分別直接寫出∠CPD、∠α、∠β之間的數(shù)量關系.
,圖1) ,圖2)
,圖3) ,備用圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九年級數(shù)學興趣小組想測量建筑物AB的高度.他們在C處仰望建筑物頂端,測得仰角為48°,再往建筑物的方向前進6米到達D處,測得仰角為64°,求建筑物的高度.(測角器的高度忽略不計,結果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校舉辦“迎奧運”知識競賽,設一、二、三等獎共12名,獎品發(fā)放方案如下表:
一等獎 | 二等獎 | 三等獎 |
1盒福娃和1枚徽章 | 1盒福娃 | 1枚徽章 |
用于購買獎品的總費用不少于1000元但不超過1100元,小明在購買“福娃”和微章前,了解到如下信息:
(1)求一盒“福娃”和一枚徽章各多少元?
(2)若本次活動設一等獎2名,則二等獎和三等獎應各設多少名?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com