【題目】如圖所示,點EAD延長線上一點,如果添加一個條件,使BCAD,則可添加的條件為(

A.C+ADC180°B.A+ABD180°

C.CBD=∠ADCD.C=∠CDA

【答案】A

【解析】

同位角相等,兩直線平行;內(nèi)錯角相等,兩直線平行;同旁內(nèi)角互補,兩直線平行,據(jù)此進行判斷.

解:若∠C+∠ADC180°,則BC∥AD,故A選項正確;

∠A+∠ABC180°,則BC∥AD∠A+∠ABD180°,無法得到BC∥AD,故B選項錯誤;

∠CBD∠ADB,則BC∥AD∠CBD∠ADC,無法得到BC∥AD,故C選項錯誤;

∠C∠CDE,則BC∥AD∠C∠CDA,無法得到BC∥AD,故D選項錯誤;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG邊長分別為ab,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正確結(jié)論有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鐘面上,點為鐘面的圓心,以點為頂點按要求畫出符合下列要求的角(角的兩邊不經(jīng)過鐘面上的數(shù)字):

1)在圖1中畫一個銳角,使銳角的內(nèi)部含有2個數(shù)字,且數(shù)字之差的絕對值最大;

2)在圖2中畫一個直角,使直角的內(nèi)部含有3個數(shù)字,且數(shù)字之積等于數(shù)字之和;

3)在圖3中畫一個鈍角,使鈍角的內(nèi)部含有4個數(shù)字,且數(shù)字之和最。

4)在圖4中畫一個平角,使平角的內(nèi)部與外部的數(shù)字之和相等;

5)在圖5中畫兩個直角,使這兩個直角的內(nèi)部含有的3個數(shù)字之和相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10,若將PAC繞點A逆時針旋轉(zhuǎn)后得到P′AB.

(1)求點P與點P′之間的距離;

(2)求∠APB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年水果大豐收,A,B兩個水果基地分別收獲水果380件、320件,現(xiàn)需把這些水果全部運往甲、乙兩銷售點,從A基地運往甲、乙兩銷售點的費用分別為每件40元和20元,從B基地運往甲、乙兩銷售點的費用分別為每件15元和30元,現(xiàn)甲銷售點需要水果400件,乙銷售點需要水果300件.

(1)設(shè)從A基地運往甲銷售點水果x件,總運費為W元,請用含x的代數(shù)式表示W,并寫出x的取值范圍;

(2)若總運費不超過18300元,且A地運往甲銷售點的水果不低于200件,試確定運費最低的運輸方案,并求出最低運費.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使三角形AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( 。

A. 80° B. 90° C. 100° D. 130°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七巧板是一種古老的中國傳統(tǒng)智力玩具.如圖,在正方形紙板ABCD中,BD為對角線,E、F分別為BCCD的中點,APEF分別交BD、EFOP兩點,M、N分別為BO、DO的中點,連接MP、NF,沿圖中實線剪開即可得到一副七巧板.若AB1,則四邊形BMPE的面積是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠水青山就是金山銀山,為保護生態(tài)環(huán)境,A,B兩村準備各自清理所屬區(qū)域養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,每村參加清理人數(shù)及總開支如下表:

村莊

清理養(yǎng)魚網(wǎng)箱人數(shù)/

清理捕魚網(wǎng)箱人數(shù)/

總支出/

A

15

9

57000

B

10

16

68000

(1)若兩村清理同類漁具的人均支出費用一樣,求清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱的人均支出費用各是多少元;

(2)在人均支出費用不變的情況下,為節(jié)約開支,兩村準備抽調(diào)40人共同清理養(yǎng)魚網(wǎng)箱和捕魚網(wǎng)箱,要使總支出不超過102000元,且清理養(yǎng)魚網(wǎng)箱人數(shù)小于清理捕魚網(wǎng)箱人數(shù),則有哪幾種分配清理人員方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校機器人興趣小組在如圖所示的矩形場地上開展訓(xùn)練,機器人從點A出發(fā),在矩形ABCD邊上沿著A→B→C→D的方向勻速移動,到達點D時停止移動,已知AD=6個單位長度,機器人的速度為1個單位長度/s且其移動至拐角處調(diào)整方向所需時間忽略不計.設(shè)機器人所用時間為ts)時,其所在位置用點P表示,P到對角線BD的距離(即垂線段PQ的長)為d個單位長度,其中dt的函數(shù)圖象如圖所示.

1)圖中函數(shù)圖象與縱軸的交點的縱坐標在圖中表示一條線段的長,請在圖中畫出這條線段.

2)求圖a的值;

3)如圖,點M、N分別在線段EF、GH上,線段MN平行于橫軸,MN的橫坐標分別為t1、t2.設(shè)機器人用了t1s)到達點P1處,用了t2s)到達點P2處(見圖).若CP1+CP2=7,求t1、t2的值.

查看答案和解析>>

同步練習(xí)冊答案