【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結論有( )
A. 0個 B. 1個 C. 2個 D. 3個
【答案】D
【解析】分析:由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對應邊相等即可得到BE=DG,利用全等三角形對應角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.
詳解:①∵四邊形ABCD和EFGC都為正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故結論①正確.
②如圖所示,設BE交DC于點M,交DG于點O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②結論正確.
③如圖所示,連接BD、EG,
由②知,BE⊥DG,
則在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③結論正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】從2013年1月7日起,中國中東部大部分地區(qū)持續(xù)出現(xiàn)霧霾天氣.某市記者為了了解”霧霾天氣的主要原因“,隨機調(diào)查了該市部分市民,并對調(diào)查結果進行整理.繪制了如下尚不完整的統(tǒng)計圖表.
組別 | 觀點 | 頻數(shù)(人數(shù)) |
A | 大氣氣壓低,空氣不流動 | 80 |
B | 地面灰塵大,空氣濕度低 | m |
C | 汽車尾氣排放 | n |
D | 工廠造成的污染 | 120 |
E | 其他 | 60 |
請根據(jù)圖表中提供的信息解答下列問題:
(1)填空:m= , n= . 扇形統(tǒng)計圖中E組所占的百分比為%;
(2)若該市人口約有100萬人,請你估計其中持D組“觀點”的市民人數(shù);
(3)若在這次接受調(diào)查的市民中,隨機抽查一人,則此人持C組“觀點”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;
(2)求出∠BOD的度數(shù);
(3)請通過計算說明OE是否平分∠BOC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,I點為△ABC的內(nèi)心,D點在BC上,且ID⊥BC,若∠B=44°,∠C=56°,則∠AID的度數(shù)為何?( )
A. 174 B. 176 C. 178 D. 180
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A,B在數(shù)軸上對應的數(shù)分別為a,b,且|a+4|+(b-2)2=0,點A,B之間的距離記作AB.
(1)線段AB的長為 ;(直接寫出結果)
(2)若動點P在數(shù)軸上對應的數(shù)為x.
①當PA+PB的值最小時,則奇數(shù)x的值為 ;(直接寫出結果)
②當PA+PB=14時,求x的值;
(3)當動點P在點A的左側(cè),M,N分別是PA,PB的中點,當點P在A的左側(cè)移動時,聰明的小明同學在計算PM+PN和PN-PM的值時發(fā)現(xiàn):其中只有一個的值是不變的,請你判斷出哪一個的值不變,并求這個值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是x軸上的一個動點,點C在y軸上,以AC為對角線畫正方形ABCD,已知點C的坐標是,設點A的坐標為.
當時,正方形ABCD的邊長______.
連結OD,當時,______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOC為直角,OC是∠BOD的平分線,且∠AOB=57.65°,則∠AOD的度數(shù)是( )
A. 122°20′ B. 122°21′ C. 122°22′ D. 122°23′
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經(jīng)過A(﹣1,0),B(2,0),C三點.直線y=mx+ 交拋物線于A,Q兩點,點P是拋物線上直線AQ上方的一個動點,作PF⊥x軸,垂足為F,交AQ于點N.
(1)求拋物線的解析式;
(2)如圖①,當點P運動到什么位置時,線段PN=2NF,求出此時點P的坐標;
(3)如圖②,線段AC的垂直平分線交x軸于點E,垂足為D,點M為拋物線的頂點,在直線DE上是否存在一點G,使△CMG的周長最小?若存在,請求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com