【題目】從2013年1月7日起,中國中東部大部分地區(qū)持續(xù)出現(xiàn)霧霾天氣.某市記者為了了解”霧霾天氣的主要原因“,隨機(jī)調(diào)查了該市部分市民,并對(duì)調(diào)查結(jié)果進(jìn)行整理.繪制了如下尚不完整的統(tǒng)計(jì)圖表.

組別

觀點(diǎn)

頻數(shù)(人數(shù))

A

大氣氣壓低,空氣不流動(dòng)

80

B

地面灰塵大,空氣濕度低

m

C

汽車尾氣排放

n

D

工廠造成的污染

120

E

其他

60

請(qǐng)根據(jù)圖表中提供的信息解答下列問題:

(1)填空:m= , n= . 扇形統(tǒng)計(jì)圖中E組所占的百分比為%;
(2)若該市人口約有100萬人,請(qǐng)你估計(jì)其中持D組“觀點(diǎn)”的市民人數(shù);
(3)若在這次接受調(diào)查的市民中,隨機(jī)抽查一人,則此人持C組“觀點(diǎn)”的概率是多少?

【答案】
(1)40;100;15
(2)解:100× =30(萬人);

所以持D組“觀點(diǎn)”的市民人數(shù)為30萬人


(3)解:隨機(jī)抽查一人,則此人持C組“觀點(diǎn)”的概率是 =

答:隨機(jī)抽查一人,則此人持C組“觀點(diǎn)”的概率是


【解析】解:(1)總?cè)藬?shù)是:80÷20%=400(人),則m=400×10%=40(人), C組的頻數(shù)n=400﹣80﹣40﹣120﹣60=100(人),
E組所占的百分比是: ×100%=15%;
所以答案是:40,100,15%;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計(jì)圖的相關(guān)知識(shí),掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況,以及對(duì)概率公式的理解,了解一般地,如果在一次試驗(yàn)中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率為P(A)=m/n.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】采摘茶葉是茶農(nóng)一項(xiàng)很繁重的勞動(dòng),利用單人便攜式采茶機(jī)能大大提高生產(chǎn)效率.實(shí)踐證明,一臺(tái)采茶機(jī)每天可采茶60公斤,是人手工采摘的5倍,購買一臺(tái)采茶機(jī)需2400元.茶園雇人采摘茶葉,按每采摘1公斤茶葉m元的標(biāo)準(zhǔn)支付雇工工資,一個(gè)雇工手工采摘茶葉20天獲得的全部工錢正好購買一臺(tái)采茶機(jī).

1)求m的值;

2)有兩家茶葉種植戶王家和顧家均雇人采摘茶葉,王家雇用的人數(shù)是顧家的2倍.王家所雇的人中有的人自帶采茶機(jī)采摘, 的人手工采摘,顧家所雇的人全部自帶采茶機(jī)采摘.某一天,王家付給雇工的工資總額比顧家付給雇工的工資總額少600元.問顧家當(dāng)天采摘了多少公斤茶葉?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】抗震救災(zāi)中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個(gè)倉庫的糧食,全部轉(zhuǎn)移到具有較強(qiáng)抗震功能的A、B兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到AB兩庫的路程和運(yùn)費(fèi)如下表:(表中“元/噸千米”表示每噸糧食運(yùn)送1千米所需人民幣)

路程(千米)

運(yùn)費(fèi)(元/噸千米)

甲庫

乙?guī)?/span>

甲庫

乙?guī)?/span>

A

20

15

12

12

B

25

20

10

8

1)若甲庫運(yùn)往A庫糧食x噸,請(qǐng)寫出將糧食運(yùn)往AB兩庫的總運(yùn)費(fèi)y(元)與x(噸)的函數(shù)關(guān)系式;

2)當(dāng)甲、乙兩庫各運(yùn)往A、B兩庫多少噸糧食時(shí),總運(yùn)費(fèi)最省,最省的總運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在學(xué)習(xí)了函數(shù)及函數(shù)圖象的知識(shí)后,想利用此知識(shí)來探究周長(zhǎng)一定的矩形其邊長(zhǎng)分別為多少時(shí)面積最大. 請(qǐng)將他們的探究過程補(bǔ)充完整.

(1)列函數(shù)表達(dá)式:若矩形的周長(zhǎng)為8,設(shè)矩形的一邊長(zhǎng)為x,面積為y,則有y=____________;

(2)上述函數(shù)表達(dá)式中,自變量x的取值范圍是____________;

(3)列表:

x

0.5

1

1.5

2

2.5

3

3.5

y

1.75

3

3.75

4

3.75

3

m

寫出m=____________;

(4)畫圖:在平面直角坐標(biāo)系中已描出了上表中部分各對(duì)應(yīng)值為坐標(biāo)的點(diǎn),請(qǐng)你畫出該函數(shù)的圖象;

(5)結(jié)合圖象可得,x=____________時(shí),矩形的面積最大;寫出該函數(shù)的其它性質(zhì)(一條即可):____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點(diǎn)為P(﹣2,2),與y軸交于點(diǎn)A(0,3).若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,﹣2),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm.射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)填空: ①當(dāng)t為s時(shí),四邊形ACFE是菱形;
②當(dāng)t為s時(shí),以A、F、C、E為頂點(diǎn)的四邊形是直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,于點(diǎn)E,于點(diǎn)F,,求證:

試將下面的證明過程補(bǔ)充完整填空

證明:已知

______

同位角相等,兩直線平行

兩直線平行,同旁內(nèi)角互補(bǔ),

已知,

______,同角的補(bǔ)角相等

______內(nèi)錯(cuò)角相等,兩直線平行,

______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線分別與x軸、y軸交于點(diǎn)A、點(diǎn)B,且與直線于點(diǎn)C

如圖,求出B、C兩點(diǎn)的坐標(biāo);

D是線段OC上的點(diǎn),且的面積為4,求直線BD的函數(shù)解析式.

如圖,在的條件下,設(shè)P是射線BD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O、BP、Q為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形CEFG邊長(zhǎng)分別為ab,正方形CEFG繞點(diǎn)C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;BEDG;DE2+BG2=2a2+2b2,其中正確結(jié)論有( )

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案