【題目】小剛在實踐課上要做一個如圖1所示的折扇,折扇扇面的寬度AB是骨柄長OA的,折扇張開的角度為120°.小剛現要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長為24cm,寬為21cm.小剛經過畫圖、計算,在矩形布料上裁剪下了最大的扇面,若不計裁剪和粘貼時的損耗,此時扇面的寬度AB為( )
A. 21cm B.20 cm C. 19cm D. 18cm
科目:初中數學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,O為坐標原點,直線y=kx+b經過點A(﹣2,﹣1),交y軸負半軸于點B,且∠ABO=30°,過點A作直線AC⊥x軸于點C,點P在直線AC上.
(1)k= ;b= ;
(2)設△ABP的面積為S,點P的縱坐標為m.
①當m>0時,求S與m之間的函數關系式;
②當S=2時,求m的值;
③當m>0且S=4時,以BP為邊作等邊△BPQ,請直接寫出符合條件的所有點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=﹣+bx+4與x軸相交于A、B兩點,與y軸相交于點C,若已知B點的坐標為B(8,0).
(1)求拋物線的解析式及其對稱軸方程.
(2)連接AC、BC,試判斷△AOC與△COB是否相似?并說明理由.
(3)在拋物線上BC之間是否存在一點D,使得△DBC的面積最大?若存在請求出點D的坐標和△DBC的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在四邊形ABCD中,AD//BC,對角線AC、BD交于點O,且AC=BD,下列四個命題中真命題是( )
A. 若AB=CD,則四邊形ABCD一定是等腰梯形;
B. 若∠DBC=∠ACB,則四邊形ABCD一定是等腰梯形;
C. 若,則四邊形ABCD一定是矩形;
D. 若AC⊥BD且AO=OD,則四邊形ABCD一定是正方形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線y=kx+b交x軸于點A,交y軸于點B,直線y=2x﹣4交x軸于點D,與直線AB相交于點C(3,2).
(1)根據圖象,寫出關于x的不等式2x﹣4>kx+b的解集;
(2)若點A的坐標為(5,0),求直線AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2+(k﹣1)x﹣k與直線y=kx+1交于A,B兩點,點A在點B的左側.
(1)如圖1,當k=1時,直接寫出A,B兩點的坐標;
(2)在(1)的條件下,點P為拋物線上的一個動點,且在直線AB下方,試求出△ABP面積的最大值及此時點P的坐標;
(3)如圖2,拋物線y=x2+(k﹣1)x﹣k(k>0)與x軸交于點C、D兩點(點C在點D的左側),在直線y=kx+1上是否存在唯一一點Q,使得∠OQC=90°?若存在,請求出此時k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角三角板放在平面直角坐標系中,直角邊垂直軸,垂足為,已知,點,,均在反比例函數的圖象上,分別作軸于,軸于,延長,交于點,且點為的中點.
求點的坐標;
求四邊形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點E,F是AB的中點,聯結AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com