【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這個(gè)分式為和諧分式

1)下列分式:①;②;③;④.其中是和諧分式的是    填寫序號(hào)即可);

2)若a為正整數(shù),且和諧分式,請(qǐng)寫出a的值    ;

3)在分式運(yùn)算中,我們也會(huì)用到判斷和諧分式時(shí)所需要的知識(shí),請(qǐng)你用所學(xué)知識(shí),化簡

【答案】1)分式是和諧分式,故答案為:②;(2 3

【解析】

1)根據(jù)題意可以判斷題目中的各個(gè)小題哪個(gè)是和諧分式,從而可以解答本題;
2)根據(jù)和諧分式的定義可以得到a的值;
3)根據(jù)題意和和諧分式的定義可以解答本題.

解:(1)②分式,不可約分,

∴分式是和諧分式,

故答案為:②;

2)∵分式 為和諧分式,且a為整數(shù),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)、分別是、的中點(diǎn),過點(diǎn)交線段的延長線于點(diǎn),取的中點(diǎn),聯(lián)結(jié)交于點(diǎn)

求證:四邊形是菱形;

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCEDC均為等腰直角三角形,∠ACB=∠ECD90°,點(diǎn)DAB上,連接AE,求∠EAB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀并完成下列問題

通過觀察,發(fā)現(xiàn)方程:x+2+的解是:x12,x2

x+3+的解是:x13,x2;

x+4+的解是:x14,x2

……

1)觀察方程的解,猜想關(guān)于x的方程x+10+的解是   ;根據(jù)以上規(guī)律,猜想關(guān)于x的方程x+m+的解是   

2)利用上述規(guī)律解關(guān)于x的方程a+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,BAC=90°,直角∠EPF的頂點(diǎn)PBC中點(diǎn),PE,PF分別交AB,AC于點(diǎn)E,F(xiàn),給出下列四個(gè)結(jié)論:①△APE≌△CPF;AE=CF;③△EAF是等腰直角三角形;④SABC=2S四邊形AEPF,上述結(jié)論正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,已知正方形ABCD,EAD上一點(diǎn),FBC上一點(diǎn),GAB上一點(diǎn),HCD上一點(diǎn),線段EF、GH交于點(diǎn)O,EOH=C,求證:EF=GH;

(2)如圖2,若將正方形ABCD”改為菱形ABCD”,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;

(3)如圖3,若將正方形ABCD”改為矩形ABCD”,且AD=mAB,其他條件不變,探索線段EF與線段GH的關(guān)系并加以證明;

附加題:根據(jù)前面的探究,你能否將本題推廣到一般的平行四邊形情況?若能,寫出推廣命題,畫出圖形,并證明,若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱軸為直線x=1,則下列結(jié)論正確的是( 。

A. ac>0 B. 當(dāng)x>0時(shí),yx的增大而減小

C. 2a﹣b=0 D. 方程ax2+bx+c=0的兩根是x1=﹣1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABAD,ACAEBCDE,點(diǎn)EBC上.

1)求證:△ABC≌△ADE;(2)求證:∠EAC=∠DEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:事件發(fā)生的概率可以是任意正數(shù);不確定事件的概率大于而小于不確定事件發(fā)生的概率是不確定的;事件發(fā)生的概率可以等于事件不發(fā)生的概率,其中正確的(

A. 個(gè) B. 個(gè) C. 個(gè) D. 個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案